DECEMBER 22, 2000

FINAL DESIGN (100%) SUBMITTAL

CENTRAL AND SOUTHERN FLORIDA PROJECT

ENGINEERING APPENDIX FOR THE TAMIAMI TRAIL MODIFICATIONS

GENERAL REEVALUATION REPORT/ SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT (GRR/SEIS)

MODIFIED WATER DELIVERIES TO EVERGLADES NATIONAL PARK

CENTRAL AND SOUTHERN FLORIDA PROJECT

ENGINEERING APPENDIX FOR THE TAMIAMI TRAIL MODIFICATIONS

GENERAL REEVALUATION REPORT/
SUPPLEMENTAL ENVIRONMENTAL IMPACT
STATEMENT (GRR/SEIS)

MODIFIED WATER DELIVERIES TO EVERGLADES NATIONAL PARK

APPENDICES

APPENDICES

<u>Title</u>	<u>Appendix</u>
Pertinent Florida Department of Transportation Correspondence	Α
Hydrology and Hydraulics COE Analysis of Tamiami Trail Stage Hydrographs and Duration Curves Culvert Service Life Estimation	B B-1 B-2 B-3
Pavement Information Florida DOT Pavement Condition Data Falling Weight Deflectometer Test Results Pavement Thickness Pavement Design Calculations Pavement Core Data	C C-1 C-2 C-3 C-4 C-5
Structures Analysis Unit Prices and Cost Summary Alternatives 1 and 2 Alternatives 1 and 2 North Canal Detour Alternatives 2C and 2D Alternative 3 Alternative 5	D D-1 D-2 D-3 D-4 D-5 D-6

THE COLUMN STREET STREET STREET STREET, AND ADDRESS OF THE STREET STREET, AND ADDRESS OF THE STREET, A

APPENDIX A

PERTINENT FLORIDA DEPARTMENT OF TRANSPORTATION CORRESPONDENCE

JEB BUSH GOVERNOR THOMAS F. BARRY, JR. SECRETARY

March 30, 2000

District Six Environmental Management Office 1000 N.W. 111th Avenue, Room 6101 Miami, Florida 33172

Mr. Richard E. Bonner, P.E Department of the Army Jacksonville District Corps of Engineers Programs and Project Management Division Project Management Branch P.O. Box 4970 Jacksonville, Florida 32232-0019

Dear Mr. Bonner:

The Florida Department of Transportation (FDOT) is in receipt of your letter dated January 12, 2000 which recaps discussions held on November 3, 1999, between the FDOT and the Army Corps of Engineers (the Corps). As you know, on-going coordination between the Corps and the FDOT has been conducted in consideration of potential negative impacts to approximately ten miles of Tamiami Trail as surrounding surface water elevations are raised during the implementation of the Modified Water Deliveries to Everglades National Park (MWD) project. As noted in your January 12, 2000 letter, the Corps has reviewed a number of alternatives and has determined that construction of four bridges on Tamiami Trail would meet the Corps' future flow requirements and maintain a surface water elevation that would only affect the subgrade of the roadway during low frequency events.

During a meeting held on February 17, 2000, the FDOT presented their findings of review to the Corps regarding this proposed alternative. As stated in the FDOT's letter to the Corps dated May 7, 1999, the base clearance requirement may be reduced from 2 feet to one foot for purposes of conceptual alternative analysis. The clearance reduction is predicated on the use of black base (i.e., asphalt, which is more resistant to flooding than a limerock base [a limerock base would require a greater clearance of two to three feet]). The clearance would be measured from the design high water elevation to the bottom of the base at the outside edge of shoulder.

With existing roadway conditions, and assuming the desired flow of 4,000 cubic feet per second (cfs) with implementation of the MWD project, the Corps predicts a design high water elevation of 9.5 feet. An attachment to the FDOT letter dated May 6, 1999, provides the calculations which

March 30, 2000 Richard Bonner page two

result in the proposed profile grade. It shows that the outside edge of the shoulder would need to be built to 12 feet NGVD in order to provide for high water elevations of 9.5 feet and at least 1 foot of clearance from the bottom of the subgrade (black base).

The Corps has proposed to build four bridges in strategic locations, without reconstructing the remainder of Tamiami Trail, in order to decrease future surface water intrusion into the base of the roadway. However, based on the Corps' hydrology study, the bridge option would only lower the surface water to 8.87 feet, lowered only 0.63 feet when compared to the option of having no bridges (existing). These numbers apply to the desired 4,000 cfs. If lower flows are considered, for instance 2,250 cfs, the study shows a difference of only 0.18 feet between the two options. This appears to indicate that constructing bridges will have a negligible positive effect in reducing the water levels. Assuming that the Corps reduces the flow from the desirable 4,000 cfs to 1,600 cfs (with or without bridges), the highway would still need to be elevated and reconstructed with black base and there would be a gain of 1.5 feet which translates into a required crown elevation of 11.04 feet (down from 12.54 feet at 4,000 cfs). (Please note that it has been previously stated, in FDOT's May 7, 1999 letter, that the crown of Tamiami Trail would need to be at 12 feet NGVD with reconstruction. This was an incorrect statement and other citations within the same letter reflect that the elevation of the outside edge of the shoulder would need to be 12 feet NGVD if the water surface elevation were to rise to 9.5 feet. This translates into crown of 12.54 feet.) Please see the attached typical section.

The FDOT realizes the additional expense and complications, particularly on environmental grounds, that roadway reconstruction would pose. This is enhanced by the need to bring the roadway design to current standards, resulting in a wider typical section, with total reconstruction. The FDOT would entertain entering into an administrative agreement with the Corps whereby the Corps would perform maintenance on Tamiami Trail during the MWD program and the Comprehensive Everglades Restoration Project (CERP) implementation and for some specified time thereafter, in lieu of requiring total reconstruction. This could be accomplished through a Joint Project Agreement (JPA) between the FDOT and the Corps, which stipulates the Corps' responsibility for any necessary maintenance along this section of Tamiami Trail attributable to the elevated water levels.

Such an agreement would also be desired by the FDOT as the Corps is currently proceeding with regulatory water releases in meeting the requirements stipulated in the Biological Opinion (BO) Reasonable and Prudent Alternative (RPA) for the Cape Sable seaside sparrow. As discussed in previous meetings, it would be prudent for the Corps to consider the monetary, environmental and safety costs of long term, continued maintenance on the Tamiami Trail versus total reconstruction.

Consideration of this issue has been coordinated with the FDOT Central Environmental Management Office in Tallahassee. The FDOT looks forward to continued coordination with the Corps in order to reach a mutually agreeable course of action in considering impacts to the integrity of Tamiami Trail as the Modified Water Deliveries program proceeds.

March 30, 2000 Richard Bonner page three

Thank you for your consideration and continued communication in this regard. Should you have any questions in this matter, please feel free to contact me at (305) 470-5220.

Sincerely,

Marjorie K. Bixby

Acting Environmental Administrator

XOIL

cc: Tom Barry Jose Abreu John Martinez Gus Pego

Mike Ciscar

CARL Smith

Florida Department of Transportation

JEB BUSH GOVERNOR THOMAS F. BARRY, JR. SECRETARY

District Six Environmental Management Office 1000 N.W. 111 Avenue, Room 6101 Miami, Florida 33172

August 13, 1999

Richard E. Bonner, P.E.
Deputy District Engineer for Project Management
Department of the Army
Jacksonville District Corps of Engineers
P.O. Box 4970
Jacksonville, Florida 32232-0019

Re: Condition of Culverts under U.S. 41 / S.R. 90 / Tamiami Trail

Dear Mr. Bonner:

Enclosed please find a report on the condition of the culverts under U.S. 41 / S.R. 90 / Tamiami Trail from Station 708 + 10.28 (M.P. 13.871, west of Krome Avenue) to Station 1299 + 46.28 in Miami-Dade County. As a follow-up to our February 15, 1999 correspondence to you, this field assessment and report were prepared by our consultant in response to your earlier request to assess the condition and need for maintenance of the existing culverts under Tamiami Trail in Miami-Dade County. The results of this assessment were previously relayed in my telephone discussion with Ms. Cheryl Ulrich, P.E., of your office on June 3, 1999. The enclosed report is forwarded for your files and provides additional details regarding the present condition of all culverts in this area.

In summary, there are 55 steel-reinforced concrete pipe culverts between the above referenced stations. These culverts are placed in groups (typically three) within a single head wall structure on either side of the roadway (please see report for photograph of typical culvert structure). A visual inspection of each culvert on both sides of the roadway revealed that all of the culverts were between 50% and 100% full of water. No culverts were observed with obstructions from substantial sediment, debris, or vegetation build-up inside of, or immediately adjacent to, the pipe openings. A southern flow of water was observed at each location with rates varying from slow to rapid. Based on the consultant's observations, it appears that at present, the primary determining factor for flow rate through the culverts is the water level. Rapid flow rates coincide with dredged waterways south of the culverts and restricted flow rates are associated with shallow water wetlands outside of the Department's right-of-way. There is some minor

Richard E. Bonner, P.E. August 13, 1999 Page 2

maintenance needed on the southern side of the roadway at culverts #1, 2 and #3 (head wall structure #S-2), where it is recommended that a dense mat of water hyacinth be removed to improve flow. There is also an abandoned 55-gallon drum located on the south side of the roadway at culvert #55 (head wall structure #S-23). While this drum is not impeding flow, it should be removed and properly disposed of. Both the vegetation and the drum are outside the Department's right-of-way. They appear to be within Everglades National Park property, although this was not confirmed.

Based on the above findings, no maintenance of the culverts is needed at this time. As mentioned previously, the Department is proceeding with plans to install two stadia adjacent to the canal, which will allow our maintenance personnel to regularly monitor water levels next to Tamiami Trail in this area.

We hope this information is helpful. If there are any questions regarding this report please call me at (305) 470-5220.

Sincerely,

Barbara B. Culhane

District Environmental Administrator

cc: Richard Ring, ENP

Gary Evink, FDOT Central Office

Ron Steiner, FDOT Maintenance

Mike Ciscar, FDOT Environmental Mgmt

Marjorie Bixby, FDOT Environmental Mgmt.

TAMIAMI TRAIL CULVERT SURVEY REPORT S.R. 90/U.S. 41/TAMIAMI TRAIL

FROM STATION 708+10.28 (M.P. 13.871, WEST OF KROME AVENUE)

TO STATION 1299+46.28

IN MIAMI-DADE COUNTY

FLORIDA DEPARTMENT OF TRANSPORTATION DISTRICT SIX

MAY, 1999

INTRODUCTION

The objective of this report is to provide a summary of our recent inspections of cross culverts under S.R. 90/U.S. 41/Tamiami Trail. There are a total of fifty-five (55) pipe culverts under Tamiami Trail with 37 headwall structures (north and south of the roadway) at nineteen (19) locations. They are located in an eleven (11) mile section of Tamiami Trail west of S.R. 997/S.W. 177 Ave/Krome Avenue. The typical structure is a group of three steel-reinforced concrete pipes in a north-south orientation (under the road) between two concrete headwalls that are orientated parallel to the road. Sample plan details of the culverts and structures are included with this report (see Attachment 1).

METHODOLOGY

The field inspections were conducted on February 23 and 24, 1999, by two biologists from Consulting Engineering & Science, Inc. Two goals of the inspections were characterizing any obstructions to the effective operation of the culverts and marking the culvert locations for any warranted FDOT maintenance crew activities. Potential obstructions due to wetland vegetation or sedimentary buildup in front of the pipes on either side of the roadway were investigated. We also noted the shape and approximate diameter of the pipes, as well as their general hydrologic operating conditions. Each location was marked by painting the structure number on the headwall and on the asphalt beneath the guardrail on both the north and south road shoulders. In addition, a numbered wooden stake flagged with pink survey tape was placed in front of the headwalls. Representative photographs and a table summarizing our findings are enclosed (see Attachments 2 and 3, respectively).

RESULTS

The overall condition of the culverts is good and no structural problems were observed. No culverts were observed obstructions from substantial sediment, debris, or vegetation build-up inside of, or immediately adjacent to, the pipe openings. A southern flow of water was observed at each location, with rates varying from slow (noticeable by drifting periphyton) to rapid (with visibly turbulent water). Water was observed discharging mainly into shallow expanses of water surrounded by densely vegetated wetlands adjacent to the southern roadway shoulder (within Everglades National Park). However, several culverts discharged into dredged channels or sloughs (utilized as airboat docks and navigation channels at tourist establishments) which were relatively clear of vegetation and exhibited rapid flow rates.

The slow flow rates were observed at culvert locations that initially discharged to deep (3 to 4 foot depths) dredged water areas in front of southern headwalls. These dredged areas appeared to extend between 15 and 30 feet south of the discharge structures (based upon visual observations at several locations where vegetation did not obscure the view). However, the area then generally transitions at a steep slope to shallow-water (approximately 1 foot), densely vegetated wetlands to the south of Tamiami Trail.

Yellow cow lilies (Nuphar sp.) are the predominant emergent vegetative cover in front of the culverts. They occur in sparse (5 to 30 percent of surface water area) to moderate (30 to 70 percent) coverages. Other native, non-invasive aquatic vegetation present in front of the culverts included: bladderworts (Utricularia sp.), tape-grass (Vallisneria americana), and Illinois pondweed (Potamogeton illinoensis). Invasive exotic species present in front of the culverts included: water hyacinth (Eichhornia crassipes), fanworts (Cabomba sp.), and Hydrilla (Hydrilla verticillata). Only Culverts No. 1, 2, & 3 on the southside of the roadway (Structure No. S-2) had openings obstructed by a dense mat of vegetation (water hyacinth). However, based on construction plans, the FDOT right-of-way ends at the headwall at this location.

DISCUSSION

Based on our observations, it appears that the determining factor for flow rate through the culverts is hydrologic and not due to vegetation, debris, or sediment build-up. Rapid flow rates coincide with dredged waterways south of the culverts and restricted flow rates are associated with shallow water wetlands outside of FDOT right-of-way.

The mat of water hyacinth in front of Culverts 1, 2, & 3 (Structure No. S-2), located at the southern toe-of-slope near the western limits of the survey (M.P. 13.871) should be removed in order to improve flow at these culverts. This vegetation is outside of the FDOT right-of-way. It appears to be within Everglades National Park right-of-way, however this has not been confirmed. In addition, Culvert No. 35 (Structure No. S-23) has a 55-gallon drum which should be removed from the water in front of the pipe opening. This drum is outside of the FDOT right-of-way. Culvert No. 40 (Structure No. S-26) had cattails sucked into the pipe at this location but they did not appear to restrict water flow.

ATTACHMENT 1 SAMPLE CONSTRUCTION PLAN SHEETS

	Control of the contro

ATTACHMENT 2

PHOTOGRAPHS

Photo 1: Typical northern culvert opening headwall intaking water from adjacent Tamiami Canal with slow flow through moderate wetland and aquatic vegetation.

Photo 2: Culverts No. 1, 2, & 3 (Structure S-2), south of roadway, with a slow water discharge into a dense mat of exotic water hyacinth.

Photo 3: Example of northern culvert openings 1/2 full of water, with moderate to rapid flow, and sparse vegetation.

Photo 4: Example of 2/3 full southern culvert openings discharging a slow to moderate flow into sparse/mainly open water dredged area (dredging limited to headwall vicinity).

Photo 5: Example of 2/3 full northern culvert openings with a moderate water intake rate and open water - no vegetation.

Photo 6: Example of 2/3 full southern culvert openings with a slow to moderate discharge of water to an airboat docking area/navigation channel, no vegetation in open water.

ATTACHMENT 3

TABLE 1

TABLE 1

S.R. 90 / U.S. 41 / TAMIAMI TRAIL CROSS CULVERTS

			Pipe	Pipe Descriptions			
Culverce	Headwall Structure No.	Wetland Vegetation	Shape	Avg. Diameter (in inches)	Operating	Sedimentation Inside Pipe Openings	Notes
1, 2, 3	s-1 (North)	Native/ Exotic	Round	4	open, 1/2 full, slow southern flow	Minimal	Native species = Yellow cow lifes and Illinois pondwood in front of culverts (moderate density) with saltbush, arrowhead, sawgrass and glant leather fern at the headwall abutments. Exotic species = Fanwort in front of culverts (moderate density).
	5-2 (South)	Exacic	Round	S. T.	open, 1/2 full, slow southern flow	Minimal	Exotic species = Water hyacinth in a solid, floating mat (high density). Tire in front of center pipe, grasses at headwall abutments.
	North)	Native/ Exotic	Round	44	open, 2/3 full, slow southern flow	Minimal	Native species - Yellow cow lilies and Illinois pondweed in front of culverts (moderate density). Exotic species - Torpedo grass at headwall abutments.
e ô	South)	Native/ Exotic	Round	4t 30	open, 2/3 full, slow southern flow	Minimal	Native species = Yellow cow lilies in front of culverts (moderate density). Exotic species - Water hyacinth (high density) behind lilles, approximately 20 feet from the culverts.
on on	S.5 (North)	Native/ Exotic	Round	4.8	open, full, slow southern flow	Minimal	Native species = Yellow cow lilies in front of culverts (moderate density). Saltbush, arrowhead, pond apple, hydrocotyl, and spleenwort at abutments. Exotic species = Torpedo grans and fanwort at abutments.
A.	South)	Native/ Exeric	Round	37 **	open, full, slow/ moderate southern flow	Ninimal	Marive species - Yellow cow lilles in front of culverts (moderate density). Muisance/Exotic species - Fanworts in front of culverts (moderate density). Cattails and grasses at the abutments.

			Pipe	Descriptions			
Culverts	Headwall Structure No.	Wetland Vegetation	Shape	Avg. Diameter (in inches)	Operating Conditions	Sedimentation Inside Pipe Openings	Notes
	S.7 (North)	Native/ Exotic	Round	ਲ	open, full, slow southern flow	Minimal	Native species = Yellow cow lifes and Illinois pondweed in front of culverts (moderate density). Saltbush, broomsedge, and grasses at the abutments. Nusance-Exotic species - Cattails and torpedo grass at abutments.
10. 11. 12	(Bouch)	Malive/ Exctic	Round	m T	open, full, slow/ moderate southern flow	Minimal	Native species - Yellow cow lilies in front of culverts (moderate density), pickershwed is present among lilies. Grusses, broomsedge, and willow at the abutments. Myisance/Exptic species = Cattails at the abutments.
13, 14, 15	S 9 (North)	Native/ Exotic	Round	So (North, concrete headwall) 54 (South, 3 corrugated steel pipes)	open, 1/2 full, rapid southern flow	Minimal	Only 1 structure number, steel pipes with no headwall on southside. Native species - Yellow cow lilies, tupe grass and illinois pond weed (moderate densities) in front of culverts with sections of open water. Pond apple, giant spikerush and arrowhead at the abutments. Exotic species - Torpedo grass at the abutments.
16, 17, 13	S-10 (Mosth)	Mative/ Exerte	Round	7	Open, full, moderate southern flow	Minimal	Native_Species - Yellow cow lilies and Illinois pond weed in front of culverts (moderate density). Pickerelweed at N.S. abutment. Nulsance/Exotic species = Fanvort in front of culverts (moderate density) and common read at N.W. abutment.
	South)	Marive	Round	55	Open, 3/4 full, moderate southern flow	None	Mative species = Yellow cow lilies in front of culverts (moderate density) with cattails and pickerclweed further south in shallow waters. Giant leather fern at S.E. abutment.
19, 30, 31	5-12 (Horch)	Mative/ Exeric	Round	01 18	Open, 1/2 full, slow/moderate southern flow	Minimal	Native species - Yellow cow lilies in front of culverts (moderate density) with spikerush, broomsedge, arrowhead, pond apple, giant leather fern, and shield ferns at abutments. Nuisance/Exotic species - Torpedo grass and pickerelweed at abutments.

			Pipe	Pipe Descriptions			
Culverts	Headwall Structure No.	Wetland	Shape	Avg. Diameter (in inches)	Operating	Sedimentation Inside Pipe Openings	Notes
19. 26. 21	S-11 (South)	Native/ Exotic	Round	о Т	Open, 1/2 full, moderate southern flow	Minimal	Native Species = Yellow cow lilies in front of culverts (moderate density) with pond apples, giant leather ferns, and shield (erns at abutments. Nulsance/Exotic species = Cattails in front of culverts (moderate density) with Brazilian pepper at abutments.
22, 23, 24	S-14 (North)	Mative/ Exeric	Round	60 7	Open, 3/4 full, slow/noderate southern flow	Minimal	Native species = Yellow cow lilies and Illinois pondweed in front of culverts (modorate density) with sawgrass, arrowhead, and primrose willow at abutements. Nulsance/Exotic species - Fanwort in front of culverts (moderate density), with cattails, pickorelweed, and common reed at abutments.
	S 15 (South)	Native/ Mulsance	Round	æ T	Open, 3/4 full, slow southern flow	None	Native species - Yellow cow lilies, scattered in open water in front of culverts (sparse density), with flatsedge at one abutment. Nuisance species - Common reed at abutments.
27, 26, 27, 38	S.16 (North)	Native/ Exotic	Round	7 5	Open, full, slow/ moderate southern flow	Minimal	Native species - Yellow cow lilies in front of culverts (moderate density), with giant spikerush, mowed pond apple saplings and sawgrass clumps at the abutments. Exotic species = Fanworts in front of culverts (moderate density).
	5-17 (South)	Native	Round	75	Open, full, slow southern flow	Minimal	Native species = Yellow cow lilies in front of culvarts (moderate density) and at abutments, with arrowhead, constal plain willow, arrowhead, and giant spikerich also at abutments. Nuisance species = Common reed at one abutment.
20, 40, 31	S-18	Matave/ Exerte	Round	T.G	Open, full, moderate southern flow	Minimil	Native species = Mostly open water in front of culverts, some yellow cow lilies in front of culverts (sparse density), with some spikerush at abutments. Exotic species * Mostly open water in front of culverts, some (anwords in front of culverts, some (anwords in front of culverts) (sparse density) and at abutments, with topped grass also present at the abutments.

			í				
Culverus	Headwall Structure No.	Wetland	Shape	Avg. Diameter (in inches)	Operating Conditions	Sedimentation Inside Pipe Openings	Mates
30, 31	S-19 (South)	Wative/ Exotic	punoa	ege Vii	Open, (ull, moderate southern flow	Minimal	Native species = Mostly open water in front of culverts, some yellow cow lilles in front of culverts (sparse density). Exotic species = Mostly open water in front of culverts, some fanworts in front of culverts (sparse density) with some moved toppedo yeass at aboutments.
m m	S-20 (North)	Native/ Exotic	Kound	10	Open, full, slow southern flow	Minimal	Native species = Yellow cow lilies in front of culverts (moderate density) with mowed primrose willow and giant leather ferns at abutments. Exotic species = Fauworts in front of culverts (moderate density) with cattails and torpedo grass at abutments.
	S-21 (South)	Mative/ Exotic	Round	#	Open, full, slow southorn flow	Minimal	Native species - Yellow cow lilies in front of cultwerts (moderate density) with coastal plain willow, pond apple, red bay, giant leather fern, saltbush, and various grasses at abutments. Exotic section: - Fanworts in front of culverts (moderate density).
	S-22 (Morth)	Native/ Exotic	Round	103	Open, full, slow southern flow	Minimal	Native species = Yellow dow lilles in tront of cultwits (moderate density) with broomsedge, saltbush, arrowhead, primrose willow, and various ferns at abutments. Exotic/Nilsance species - Fanworts in front of cultwarts (moderate density) with moved torpedo grass and common weeds at abutments.
ís es	6 dino2)	Mariva/ Smorid	Round	00 15	Open, full, no/slow southern (low	Minimal	Native species = Yellow cow liles in front of culver (moderate to high density) with sawgrass, arowhead, gint spikenush, and various ferns at abutments. Exotic/Nuisance species - Parworts in front of culver (moderate to high density) with torpedo grass, hydrilla, Brazilian pepper, common rend, and cattails at abutments. Additionally, an open-ended, 55-gillon drum is

			Pipe	Descriptions			
Culverts	Headwall Structure Mo.	Wetland	Shape	Avg. Diameter (in inches)	Operating	Sedimentation Inside Pipe Openings	Notes
	8-24 (Borth)	Mative/ Exotic	Round	in a	open, 3/4 full, moderatc/ rapid southern flow	Minimal	Mative species - No vegetation in front of culverts, open water with yellow cow liles and giant spikerush at the abutments. Explic/Nuisance species - Open water in front of the culverts, with fanworts and cattails at the abutments.
36, 37, 43	5-25 (South)	Marive/ Exeric	Round	£ 3	Open, 3/4 tull, moderate/ rupid southern flow	Minimal	Native Species - Open water in front of culvers, with bladderwort, giant spikerush, pennywort, and primrose willow at the abunments, Exotic species = Fanworts and hydrilla in water BSIWEEN the culverts, not in front of the abunments. abutments.
	8. 577 5. 5. 7. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	Native/ Exeric	Found	d. 20	Open, full, moderate couthern flow	Minamal	Native species = Mainly open water in trent of culvarts, with some illinois pondweed (moderate density), and with yellow cow lilies at the abumments. Nuisance/Exotic species = Cattails confined mainly to the abumments with common reeds and torpedo grass.
2	S-27 (South)	Matryo/ Exelic	Round	т Ч	Open, full, moderate southern flow	Minimal	Native species - Mainly open water in front of culvorts, with some yellow cow lilles (sparse density), and coastal plain willow at the Exelection. Exelection of the Exelection of the Exelection of Sparse density) in open water with Brazilian pepper and cattails at the abutments.
11 -11, 43	S-28 (Holth)	Mative/ Exotic	Found	95	open, 1/2 full, slow/moderate southern flow	Minimal	Native species = Yellow cow lilles and Illinois pondword in front of culverts (sparse density). Exotic/Nuisance = Panworts in front of culverts (sparse density) with torpodo gruss, cartails, and common reed at abutments.
	e d e d	Mative, Exeric	Round	i i	Open, 1/2 full, moderate southern flow	None	Native species = Yellow cow lilies in BETWEEN the culverts. Checkers density), with giant leather fern, coastal plains willow, broomsedge, and white begger ticks at the abutments. Exolic specks at the abutments in BETWEEN the culverts, not in front of the culverts (makerate density), with Brazilian pepper and torged grass at the abutments.

Structure Structure State State Although State Coperating Coperating State Coperating Coperating State Coperating Coperat			7.00					
15, 46 Structure Wetland Shape Ang. Dismotes Conditions Inside Page Conditions Conditi				Pipe	Descriptions			
15, 46 Sound Sound 48 Open, full. Minimal 15, 46 Sound 18 Open, full. Minimal 15 16 South Exotic Round 48 Open, full. Minimal 15 17 S 32 Native/ Round 48 Open, full. Minimal 15 15 S 32 Native/ Round 44 Open, full. Minimal 15 15 S 33 Mitive/ Round 44 Open, full. Southern flow 15 S 34 Native/ Round 38 Open, full. Southern flow 15 S 34 Native/ Round 38 Open, full. Southern flow 15 S 35 Mative/ Round 38 Open, full. Southern flow 15 S S Mative/ Round 38 Open, full. Southern flow 15 S S Mative/ Round 38 Open, full. Southern flow 15 S S Mative/ Round 38 Open, full. Southern flow 15 S S Mative/ Round Mone Mone Mone Mone Mone 15 S S Mative/ Round Mone	Culveris	Readwall Structure No.	Wegetation	Shape		Operating Conditions	Sedimentation Inside Pipe Openings	Motes
S.31 Native/ Round 48 Open, full, Minimal	'n		Mative/ Execte	Round	23 ef	Open, full, moderate southern flow	Minimal	Marive species = Yellow cow lilics and Illinois pondweed in from of culverts (moderate density) with white beggar ticks, arrowheads, as well as mowed leather and shield ferns at the abutments. *Robic/Nuisance = Fanworts in from of culverts (moderate dansity) with torpado grass at the butments)
S.32 Native/ Round 48 Open, full, Minimal Minimal S.33 Millyc/ Round 44 Open, full, moderate/sapid southern flow moderate/rapid southern flow minimal southern flow moderate/rapid southern flow south		8-31 (South)	Mative/ Exotic	Round	er er	Open, full, moderate southern (low	Minimal	Native species - Yellow cow lilles in front of culverts (moderate density) and at the abutments. Exotic/Nuisance = Fanworts in front of culverts (moderate density) with napier grass at the
S-33 Mative/ Round 44 Open full, minimal moderate/Eupid southern flow so		8-32 (North)	Native/ Exotic	Round	д ©	Open, full, moderate/rapid southern flow	Minimal	Native species - Yellow cow lilies and Illinois pondweed in front of culverts (moderate density) with white begges ticks, arrowheads, and bladderworts at the abutments. Exotic/Nulsance = Farworts in front of culverts (moderate density) with torpedo grass at the abutments.
S1.53 Native/ Round 38 Open, full, rapid None Native Species + Mainly open vater in from Species - Mainly open vater in from Scoutb, Exotic Round 38 Open, full, rapid None Scotis and hydrilla at the abutments southern flow Southern flow Exotic Mative species - Open water in from pulsers from the abutments in from culverts, with yellow cow lilies and plain willow at the abutments. Exotic Mainly option of the culverts with hydrilla and common reed at the abutments.	n) op	Scuth)	Mative/ Exotic	Round	4	Open, full, moderate/rapid southern flow	Minimal	Native species = Mainly open water in front of culverts, with some yellow cow lilies (sparse bensity) and some coustal plain willow, white aburments, lantana, and broomsedge at the aburments. Exotic/Maisance species = Hydrilla (sparse density) in open water with fanouts and
Native/ Round 38 Open, full, rapid None Native Species - Open water in from of culverts, with yellow cow lilies and coastal plain willow at the abutments. Routic/Nulsame Species = Mainly open water from of the culverts with hydrilla, cattain and common reed at the abutments.	rj	S-34 (Morth)	Native/ Exotic	Round	3) E	Open, full, rapid southern flow	None	Mative species + Mainly open water with some Illinois pondweed (sparse density) in front of culverts. Exotis/Nuisance species + Hydrilla (sparse density) in open water with cattails, torpedo openses and hydrilla.
		S-35 (South)	Mative/ Exectic	Round	rio en	Open, full, rapid southern flow		Mative species - Open water in front of culvetts, with yellow cow lilies and coastal glain willow at the abutments. Exotic/Muisance species - Mainly open water in front of the culvetts with hydrilla, cattails, and common reed at the abutments.

,

		Ilies, Illinois white beggar ticks at con water in front of ands of hydrilla	the bottom. Fanworts outnerts. ion. only open water latsedge and coastal its.
	Notes	Mative species = Mainly open water in front of culveres with yellow cow lilies, Illinois (windweed, arcowheads, and white heggar ticks at the abutments and white heggar ticks at Excit species = Mainly open water in front of culverts but with some strands of hydrill, sucked into the intake opening of at least one	Autive species = No vogetation, only open water in front of culverts with flatsedge and coastal plain willow at the abutments. **Society** Process of the abutments of coastal plain willow at the abutments of coastal coast
	Sedimentation Inside Pipe Onening	None	Minimal
	Operating Conditions	Open, full, rapid southern flow	Open, full, rapid southern flow
Pipe Descriptions	Avg. Diameter (in inches)	B 7	4. 80
Pipe	Shape	Round	Round
	Wetland	Mative/ Exotic	Native/ Exotic
	Headwall Structure No.	North)	S-37 (Fourth)
	Culvetts		

JEB BUSH GOVERNOR

THOMAS F. BARRY, JR. SECRETARY

District Six Environmental Management Office 1000 N.W. 111 Avenue, Room 6101 Miami, Florida 33172

May 7, 1999

Richard Bönner, Deputy District Engineer for Project Management Department of the Army Jacksonville District Corps of Engineers P.O. Box 4970... Jacksonville, Florida 32232-0019

Dear Mr. Bonner:

This is in response to your April 16, 1999 letter received April 22, 1999 regarding the Tamiami Trail project feature of the U.S. Army Corps of Engineers' (the "Corps") Modified Water Deliveries to Everglades National Park Project.

Since our February 23, 1999 meeting with your staff, a coordination team has been established within the Florida Department of Transportation (the "Department") to assist in reviewing alternatives and plans developed for this project. A list of team members along with their responsibilities and contact information is attached. A number of these team members met to discuss your most recent letter and have assembled the information provided below. The information in this letter is divided into two parts: the first part contains general comments regarding the project, and the second part contains specific responses to questions raised in your letter.

General Comments

We were concerned to read in your letter that your process is on hold pending information from our agency, since your staff stated at the conclusion of our February 23rd meeting that they would proceed with additional alternatives analysis through March and early April, and subsequently provide that information to the Department for review. As we committed in the February meeting, our Traffic Operations Division proceeded with obtaining all traffic Level of Service (LOS) and crash data for this portion of Tamiami Trail and performed a detailed analysis of this data in order to determine the possible need for four-laning of the roadway or for provision of a median separator. That work was completed April 26, 1999 and the results are provided below.

As expressed at the February 23rd meeting and in our July 31, 1998 teleconference with your staff, we are concerned about the level of major engineering and environmental work involved in developing and analyzing the alternatives for this project, particularly given the ambitious schedule for project implementation. We wish to reiterate our recommendation made in last summer's teleconference that the Corps hire a qualified consulting firm with expertise in transportation engineering and environmental analysis to perform the substantial work involved in developing the project alternatives. While the Department's coordination team can assist with review of alternatives and plans, and serve as a source of information and contacts, we feel that a dedicated consultant team is essential to completing the substantial work involved in developing and designing this project within the established schedule. To that end, we are providing a list of consulting firms which are prequalified by the Department to perform Project Development and Environmental (PD&E) (i.e., National Environmental Policy Act [NEPA]) alternatives analysis studies and prepare project master plans. This is in addition to the attached list of Departmentprequalified Final Design firms, which your staff requested at our February 23rd meeting. One advantageous approach would be to consider hiring a single firm qualified not only in PD&E and Final Design, but Construction, Engineering and Inspection (CEI) work as well, since a CEI firm will be needed to inspect the construction contractor's work. In addition, due to the project length, you should consider dividing the project construction into two or three segments in order to expedite this phase by utilizing multiple contractors.

As discussed in February, part of the difficulty in responding to your staff's request for all the environmental, water quality, and design considerations which would need to be incorporated into this project lies in the fact that the decision of which agency (s) will design, construct and fund this project, and which specific funding types will be utilized, has not yet been decided. For example, if the ACOE were to construct and fund this project using Department of Interior (DOI) funds, we do not believe that Section 4 (f) [Title 49 U.S.C., Section 1653(f), as amended in 1983 and codified as 49 U.S.C. Section 303] would apply, as it only applies to agencies within the U.S. Department of Transportation. We do feel that a final legal determination of this issue needs to be made since a U.S. highway is involved, and therefore we will request such a determination and will forward the opinion to you separately. If any FHWA funds were utilized at any stage of this project, however (design, construction, right-of-way acquisition, etc.), Section 4(f) would apply. This includes the potential for direct permanent Section 4(f) impacts, temporary Section 4(f) impacts due to Maintenance of Traffic (MOT) or other construction activities, indirect impacts through changes in access to Section 4(f) lands, and Constructive Use Section 4(f). Section 4(f) lands in the area include Everglades National Park and possibly other publicly owned recreation areas, wildlife or waterfowl refuges, or archaeological or historic sites identified as part of a comprehensive archaeological and cultural resource survey. In any case, you should be aware that if Section 4(f) were determined to apply, it could substantially affect the project's MOT plans, and consequently the preferred alternative alignment, as well as the

project schedule.

Similarly, other processes, procedures and permitting requirements may apply if this project is designed and constructed by the Department, which may not apply to a Corps-designed and -constructed facility on our right-of-way. Consequently it is difficult to insure a complete list of all issues and design considerations which should be addressed for this project. For comparison purposes, based on our knowledge of the proposed improvements planned thus far, the standard process which the Department would follow in developing this project would include, at a minimum, the following:

1. Project Development and Environmental Study Phase

- -- Project scoping phase.
- -- Development of detailed project schedule and Public Involvement Plan (PIP).
- --Advanced Notification Package to applicable agencies, organizations and elected officials.
- --Engineering and Environmental data collection & analysis; detailed field surveys for endangered species, wetlands impacts, right-of-way impacts, cultural resource surveys, etc.
- --NEPA alternatives analysis, interagency coordination (including required Endangered Species Act [ESA] Section Seven consultation with the U.S. Fish and Wildlife Service [USFWS]; coordination with the State Historic Preservation Officer [SHPO], etc.)
- Development of engineering masterplans for various alternatives.
- --Preparation of draft Preliminary Engineering Report (PER) and required environmental documents.
- --Public notice and public involvement (public workshops; public hearing).
- --Selection of preferred alternative.
- --Document revision, completion, circulation and approval.

2. Final Design Phase

- --Development of detailed roadway and drainage design plans based on the preferred NEPA alternative.
- --Structural design of retaining walls, bridges, etc., if any.
- -- Utility coordination.
- --Right-of-way acquisition; acquisition of construction easements.
- --Additional public involvement as warranted.
- --Environmental document reevaluation and update.
- --Regulatory permitting.
- -- Preparation of Technical Special Provisions (TSP's) for inclusion in contract documents.
- --Plans circulation and review.
- --Construction cost estimating.

3. Construction Phase

- -- Contractor bidding, contract letting and negotiations.
- -- Contractor mobilization.
- --Potential utility relocation.
- -Implementation of MOT plans.
- -- Project construction and inspection.
- --Potential restoration of MOT area.
- -- Wetlands mitigation construction.

Based on the above process, we estimate that with the use of prequalified consulting firms experienced in transportation Project Development and Final Design, and assuming major modifications to the entire 10-mile project area, an <u>accelerated</u> schedule for completion of both the Project Development and Final Design Phases would be two years each, and an <u>accelerated</u> Construction Phase would take approximately two years, for a total of six years. This assumes that the basic type of improvements needed (bridges, culverts, roadway elevation, or some combination of all three) has already been established in the planning phase (i.e., prior to the Project Development Phase). It also does not allow time for consultant selection and contract negotiation, although in the case of Final Design and CEI consultant selection, this process can be performed simultaneously with other project work, in advance of these phases.

As mentioned by your staff in the February 23rd meeting, the Corps may have different processes or permitting requirements which are less restrictive than those followed by the Department. For purposes of responding to your questions, the information provided below is based on what we believe would be the minimum Project Development, environmental, water quality and pavement design considerations, which would apply, regardless of funding or agency involvement.

Response to Questions

Waiver request by the Corps to reduce the two-foot base clearance requirement to a one-foot base clearance requirement:

The base clearance may be reduced from two feet to one foot for purposes of conceptual alternative development. This clearance will be measured from the design high water elevation to the bottom of the base at the outside edge of shoulder. The clearance reduction is predicated on the use of black base (i.e., asphalt, which is more resistant to flooding than a lime rock base). The design high water elevation needs to be established for each conceptual alternative. For purposes of determining roadway profile grades and pavement layer clearances the design high water will be the expected water elevation resulting from a 75 year recurrence interval, or approximately 4,000 cubic feet per second (cfs). As your staff discussed in the February 23rd meeting, they anticipate a 4,000 cfs flow event, flooding the roadway base for two to three days

Based on the design high water elevation provided by the Corps of 9.5 feet NGVD (derived from the occasional 4,000 cfs flow), a minimum profile grade elevation at the roadway crown of 12 feet would be required.

- 3) Request by the Corps to use black base at a one-foot thickness instead of lime rock at a two-foot thickness) as a subgrade material in alternatives developed for Tamiami Trail: As we discussed in the February 23rd meeting, the use of black base is acceptable, although typically more expensive than lime rock. The pavement design above is based on the use of black base and a one-foot clearance from its bottom to the design high water elevation.
- 4) Waiver request by the Corps to reduce the two-foot bridge drift clearance to a one-foot bridge drift clearance:

We concur in the reduction of the bridge drift clearance from two feet to one foot for purposes of conceptual alternative development. This clearance will be measured from the design high water elevation to the bottom of the lowest superstructure member. The design high water elevation needs to be established for each conceptual alternative. For the purposes of determining bridge clearances and openings the design high water will be the expected water elevation resulting from a 75 year recurrence interval (4,000 cfs flow). This reduction does not account for any clearance requirements that may be imposed by the South Florida Water Management District (SFWMD). The bridge drift clearance will be reevaluated for the recommended design alternative prior to final approval. The expected water velocity and the potential for debris impacting the superstructure will be part of the evaluation of the recommended design. If the clearance can be reasonably increased, up to the desirable clearance, with minimal economic and/or environmental impacts, you may be asked to review the design to provide increased clearance.

Since bridge drift clearance standards must be approved in this case by both the Department and the SFWMD, we recommend you contact SFWMD for their opinion. For preliminary considerations, as long as the velocity in the canal during the maximum design flow event at the proposed bridge location is at or under 2.5 feet per second (fps), and the type of floating debris does not cause damage to the lowest member elevation of the bridge structure, then the request may be considered for a waiver by the Department. It should also be noted, however, that the other vertical clearance which must be met is the six-foot navigation vertical clearance necessary for maintenance of the canal and the bridge structure. This six-foot vertical clearance should be above the normal water surface elevation, or the October ground water elevation.

Please reference the enclosed typical section demonstrating bridge drift clearance.

5) Request by the Corps that the Department accept overtopping of Tamiami Trail during a 1 in 500-year flow event:

Based on the design high water elevation provided by the Corps of 9.5 feet NGVD (derived from the occasional 4,000 cfs flow), a minimum profile grade elevation at the roadway crown of 12 feet would be required.

- 3) Request by the Corps to use black base at a one-foot thickness instead of lime rock at a two-foot thickness) as a subgrade material in alternatives developed for Tamiami Trail: As we discussed in the February 23rd meeting, the use of black base is acceptable, although typically more expensive than lime rock. The pavement design above is based on the use of black base and a one-foot clearance from its bottom to the design high water elevation.
- 4) Waiver request by the Corps to reduce the two-foot bridge drift clearance to a one-foot bridge drift clearance:

We concur in the reduction of the bridge drift clearance from two feet to one foot for purposes of conceptual alternative development. This clearance will be measured from the design high water elevation to the bottom of the lowest superstructure member. The design high water elevation needs to be established for each conceptual alternative. For the purposes of determining bridge clearances and openings the design high water will be the expected water elevation resulting from a 75 year recurrence interval (4,000 cfs flow). This reduction does not account for any clearance requirements that may be imposed by the South Florida Water Management District (SFWMD). The bridge drift clearance will be reevaluated for the recommended design alternative prior to final approval. The expected water velocity and the potential for debris impacting the superstructure will be part of the evaluation of the recommended design. If the clearance can be reasonably increased, up to the desirable clearance, with minimal economic and/or environmental impacts, you may be asked to review the design to provide increased clearance.

Since bridge drift clearance standards must be approved in this case by both the Department and the SFWMD, we recommend you contact SFWMD for their opinion. For preliminary considerations, as long as the velocity in the canal during the maximum design flow event at the proposed bridge location is at or under 2.5 feet per second (fps), and the type of floating debris does not cause damage to the lowest member elevation of the bridge structure, then the request may be considered for a waiver by the Department. It should also be noted, however, that the other vertical clearance which must be met is the six-foot navigation vertical clearance necessary for maintenance of the canal and the bridge structure. This six-foot vertical clearance should be above the normal water surface elevation, or the October ground water elevation.

Please reference the enclosed typical section demonstrating bridge drift clearance.

5) Request by the Corps that the Department accept overtopping of Tamiami Trail during a 1 in 500-year flow event:

Overtopping of Tamiami Trail is allowable in extreme events. Our design standards require that the cross drains (bridges and culverts) accommodate the flows expected on a 75 year recurrence interval (4,000 cfs flow). For each design alternative developed, please identify the recurrence interval that will result in an encroachment of water onto the travel lanes of the highway, and the expected duration of the encroachment.

Responses to additional questions in your letter are provided below:

6) Environmental requirements which would need to be considered in the development of the plan for modification of Tamiami Trail:

At a minimum, all standard NEPA requirements should be included in the alternatives evaluation. This includes the following:

- a) Social Impacts
 - Land Use Changes
 - Relocation Potential (including business sign relocations and other impacts to adjacent business)
 - 3. Community Services
 - 4. Title VI Considerations
 - Controversy Potential
 - 6. Utilities
- b) Cultural Impacts
 - 1. Section 4(f) Lands
 - 2. Historic Sites
 - 3. Archaeological Sites
- c) Natural Environment
 - 1. Wetlands (direct and secondary impacts and benefits)
 - 2. Water Quality (direct and secondary impacts and benefits)
 - 3. Floodplains
 - 4. Wildlife and Habitat (direct and secondary impacts and benefits)
 - 5. Farmlands
- d) Physical Impacts
 - 1. Noise
 - 2. Air
 - 3. Construction
 - 4. Contamination
 - 5. Navigation

Endangered Species; Wetlands Assessment:

A full Endangered Species survey is needed, including a survey for endangered and threatened plants by a qualified botanist trained to recognize and identify such plants, and one survey for

endangered fauna. While it is understood that the USFWS's Biological Opinion has recommended this project as potential enhancement for the endangered Cape Sable Seaside sparrow, this project has the potential to affect other species. A systematic endangered species survey and evaluation for each NEPA alternative will be needed in order to coordinate the preferred design with the USFWS under ESA Section Seven consultation. This analysis should include both temporary impacts (from MOT, construction noise disrupting nesting birds, etc.) and permanent impacts, as well as direct (within the project footprint) and secondary (outside the project footprint) impacts. A similar analysis is needed to assess the amount of wetland impacts resulting from this project. Again, while it is recognized that this project is expected to enhance wetlands beyond the project area, direct wetlands impacts from this project could be substantial. A systematic field evaluation of the acreage, type and condition of all temporary and permanent wetlands impacts, as well as an analysis of the type, amount and present condition of wetlands to be enhanced as a result of the project, will be needed. This will insure a systematic comparison so that no net loss of wetlands occurs, in accordance with Presidential Executive Order 11990 dated May 23, 1977. It will also insure that any needed mitigation can be planned for as early as possible. The wetlands assessment will also provide important information which will be needed in the evaluation of project impacts to endangered and threatened species within, or migrating through, the area.

Contamination Assessment:

A Phase I contamination impact assessment which considers adjacent properties should be performed as part of the alternative analysis process, however it does not appear from a cursory review of the project area that the potential exists for substantial contamination impacts. Any contaminated soil disrupted by roadway construction must not be exacerbated and must be remediated during construction by a qualified contamination remediation contractor. TSP's for handling this material should be included in the construction contract documents prior to contract letting.

Public Involvement; Canal and Adjacent Property Access Issues:

A Public Involvement Plan which identifies all potentially affected parties, including affected property owners and those who access the area for recreational purposes, as well as the motoring public, is suggested. There is potential to affect recreational access usage of Canal L-29, and adjacent property access, either through elevation of Tamiami Trail, or the possible need to construct retaining walls (see water quality discussion below) or relocate guardrail. Any changes in recreational access will need to be coordinated with the SFWMD and the public. In addition, any access changes which affect the SFWMD's ability to perform either routine or emergency (post-hurricane) maintenance of Canal L-29 will need to be coordinated with the SFWMD's Maintenance Division. Access to adjacent properties may be affected if the roadway is elevated, or if retaining walls must be built due to right-of-way restrictions. At a minimum, this would require easements to perform driveway harmonization during construction, and may require

right-of-way acquisition (see water quality discussion below).

Cultural Resource Assessment:

As mentioned above, a detailed archaeological and historical survey should be made by a qualified firm approved by the SHPO, and the results of the survey coordinated and addressed with the SHPO.

Permits:

Permits which need to be obtained, at a minimum, include federal and state dredge and fill permits from the appropriate agencies, a Department of Transportation permit authorizing the roadway-modifications, and a SFWMD Right-of-Way Occupancy permit for any permanent or temporary impacts to their right-of-way. Other permits, such as the DERM Class II (drainage system) or state issued (Florida Department of Environmental Protection [FDEP] or SFWMD) drainage permit may be needed.

Utilities:

We are aware of at least one buried telephone fiber optic line adjacent to Tamiami Trail within our right-of-way. If the roadway is elevated on the same footprint as the existing facility, it will probably not be necessary for the utility to relocate this line. However, construction of MOT facilities (e.g., temporary roads), or construction of culverts or bridges under the roadway have the potential to affect this line. Other utilities may be within or adjacent to the right-of-way. A full investigation of all utilities in the area must be performed as required by Florida Statutes, and impacts coordinated with the utility companies and the Department. If needed, the Department can assist you with information on which utility companies you should contact.

As mentioned above in the General Comments, the above list of environmental concerns should not be considered all-inclusive. Once the proposed improvements (elevation, bridges, culverts, etc.) have been established, additional project scoping and a complete field review should be performed in order to determine all environmental considerations for this project.

7) Water quality / drainage requirements which would need to be considered in the development of the plan for modification of Tamiami Trail:

Drainage must be provided for in the reconstruction of this portion of Tamiami Trail. The drainage facilities should be designed based on a three-year design storm frequency to convey the water. From the water quality standpoint, this facility should be designed based on a five-year design storm frequency, zone 10 or the equivalent 10-year storm frequency curves of Miami-Dade County. Pollution control structures must be designed accordingly prior to an overflow discharge. Two types of different systems might be utilized for this facility. The first is drainage swales with rock trenches at the bottom of the swales working as french drains, and the second is a french drain system where applicable. Since this road carries a rural

classification, roadside swales would be preferable and less expensive. However if right-of-way constraints, such as the need to avoid impact to Everglades National Park, or restraints on the north side of the roadway adjacent to the canal, result in inadequate right-of-way to meet the requirements of the 8 foot shoulder and roadside swales, some other drainage system will have to be designed. Drainage systems such as collection and piping of stormwater to swale areas, or the installation of french drains, will add to project costs. Additional right-of-way may be needed to accommodate the drainage system, which will also add to cost and could substantially affect the project schedule. For these reasons, drainage requirements should be addressed as early as possible.

Treatment requirements are, of course, set by the applicable regulatory agency. The Department typically obtains its drainage permits from Miami-Dade County's Department of Environmental Resources Management (DERM) under its state-delegated program, except in the case of large projects (over 40 acres of impervious area), in which case a drainage permit is obtained from the SFWMD. Typically we are required to provide treatment for the first one inch of roadway runoff. Specific water quality treatment requirements for this project would be set by the appropriate permitting agency (the FDEP, SFWMD or DERM).

8) Maps showing the Department's right-of-way for Tamiami Trail between Krome Avenue and water control structure S-333:

Copies of FDOT right-of- way maps for this portion of Tamiami Trail are enclosed. If you have any question regarding these maps please contact Arturo Toriac of our Right-of-Way Engineering Office at (305) 470-5195.

9) Status update on the resolution of ownership on some portion(s) of Tamiami Trail between the Department and the SFWMD:

The Department has received Tamiami Trail right-of-way maps, deeds and other documents from the SFWMD, and is presently comparing them with Department right-of-way maintenance maps to identify conflict areas. Mrs. Betty Blackman of the SFWMD has indicated that once the Department defines its corridor and determines the extent of the conflict areas, the SFWMD will consider the appropriate resolution of this issue. We are working steadily on this issue and hope to resolve it within the next two to three months. We will notify you when it is resolved or, alternatively, keep you informed of our progress.

In addition to the information presented here, the Corps should contact our Maps and Publications Office in Tallahassee at (850) 414-4915 for copies of several Department manuals which should be utilized in developing this project. These include the Project Development and Environment Manual, the Drainage Manual, the Plans Preparation Manual, the Roadway and Traffic Design Standards Manual.

I hope this information is informative and helpful. It is emphasized that all environmental and engineering considerations should be studied thoroughly and weighed early in the process, prior to completion of the NEPA document, and not during a later detailed design phase, since many of the above listed items have the potential to affect the selected NEPA alternative. This will prevent serious delays later in the process as final design plans are developed.

We would like to request that the Corps provide as soon as possible a detailed written project schedule which includes all milestone activities (hydrologic modeling, alternatives analysis, interagency coordination, public involvement, document preparation and approval, final design, construction, etc.).

If you have any questions regarding the enclosed information, please call me at (305) 470-5220. We look forward to continuing to work with you on this very important project.

Sincerely,

Barbara Bernier Culhane, A.I.C.P.

District Environmental Administrator

cc: Joe Miller, ACOE Jacksonville, District Engineer

Leroy Irwin, FDOT Tallahassee, Manager, Central Environmental Management Office

Jose Abreu, FDOT Miami, District Secretary

John Martinez, FDOT Miami, District Director of Production

Mike Ciscar, FDOT Miami, District Environmental Management Engineer

Florida Department of Transportation Coordination Team Members for the U.S. Army Corps of Engineers Modified Water Deliveries Project / Tamiami Trail Modifications

Name/Title	Address	Phone	Fax
Barbara Culhane, A.I.C.P., District Environmental Administrator FDOT Project Coordinator	Florida Department of Transportation District Six 1000 N.W. 111 Avenue, Room 6101 Miami, Florida 33172	(305) 470-5220	(305) 499-2308
Marjorie Bixby, Environmental Manager environmental impact review; National Environmental Policy Act (NEPA) document review; project coordination documentation.	Florida Department of Transportation District Six 1000 N.W. 111 Avenue, Room 6101 Miami, Florida 33172	(305) 470-5229	(305) 499-2308
Jorge Frases, P.E., Senior Project Manager roadway design issues; Project Development issues; typical section, traffic safety and Level of Service issues.	Florida Department of Transportation District Six 1000 N.W. 111 Avenue, Room 6103 Miami, Florida 33172	(305) 470-5305	(305) 470-5205
Ricardo Salazar, P.E. District Drainage Engineer storm water treatment issues; roadway elevation issues.	Florida Department of Transportation District Six 1000 N.W. 111 Avenue, Room 6218 Miami, Florida 33172	(305) 470-5264	(305) 470-5293
Reinaldo Carvajal, P.E. Drainage Engineer storm water treatment issues; roadway elevation issues; hydrology issues.	-Florida Department of Transportation District Six 1000 N.W. 111 Avenue, Room 6218 Miami, Florida 33172	(305) 470-5251	(305) 470-5293
Roberto Perez, P.E. Pavement Design Engineer roadway and pavement design issues.	Florida Department of Transportation District Six 1000 N.W. 111 Avenue, Room 6111 Miami, Florida 33172	(305) 470-5266	(305) 470-5338

Molonia Colu	Placida Danas de Com		
Melanie Calvo, District Permits Coordinator regulatory permitting issues; wetlands impact issues.	Florida Department of Transportation District Six 1000 N.W. 111 Avenue, Room 6101 Miami, Florida 33172	(305) 470-5223	(305) 499-2308
Susan Day, Assistant Right-of-Way Manager right-of-way acquisition; right-of-way impact issues.	Florida Department of Transportation District Six 1000 N.W. 111 Avenue, Room 6118 Miami, Florida 33172	(305) 470-5169	(305) 470-5564
James McGetrick, P.E. District Utilities Engineer utility issues.	Florida Department of Transportation District Six 1000 N.W. 111 Avenue, Room 6218 Miami, Florida 33172	(305) 470-5231	(305) 470-5293
Charles Newton, District Traffic Maintenance Engineer Maintenance Of Traffic (MOT) issues.	Florida Department of Transportation District Six 1000 N.W. 111 Avenue, Room 6202 Miami, Florida 33172	(305) 470-5344	(305) 470-5815
Mikhail Dubrovsky, P.E. Construction Plans Review Engineer constructibility issues.	Florida Department of Transportation District Six Construction Office 1000 N.W. 111 Avenue Miami, Florida 33172	(305) 499-2354	(305) 499-2351
Robert Crim, P.E., State Project Development Engineer Central Office project coordinator; Project Development issues; design issues.	Florida Department of Transportation Central Environmental Mgmt. Office 2740 Centerview Drive, Suite 3C Tallahassee, Florida 32399-2100	(850) 487-3985	(850) 922-7217
David Miro, P.E. Districts Four and Six Geotechnical Engineer geotechnical issues.	Florida Department of Transportation District Materials Office 14200 West S.R. 84 Davie, Florida 33325	(954) 475-4102	(954) 475-4119

**

FLEXIBLE PAVEMENT DESIGN SUMMARY SHEET Preliminary, subject to change

Prepared by: Roberto Perez	D	ate: Ma	y 6,1999	
W.P.I. No	s	R/9 <u>0/US</u>	41/Tamiami	Trial
State Project No.87110-			miles w of	
F.A.P. No	Т	o <u>SR 99</u>	7/Krome Av	e
County Miami-Dade	P	roject	Length_11	miles
Opening Year 2002	L	BR_40_	_ssv	
Design Year 2022	M	r 84 Mp	a	
80 KN/eq.Loads 3,100,000	%	Reliabi	lity <u>90</u>	
SN Required 3.45	D	esign S	peed_55 MP	Н
Type of Work and location: Reconst	ruction	(Existi	ng Profile	varies
from 10.3 to 12.0 Ft NGVD, Prop.				
Existing Pavement:				
Sub-grade Stabilization (LBR 40)	Tk.	Coef 0.08		
Limerock Base 12" tk.	12"	0.18	2.16	
	3.5"	0.25	0.87	
FC-2, Friction Course 5/8"tk	5/8"	0.00		
To Efficient course s, s an	- / -		3.99	
Prop. Profile Grade :			1 an a - 1 2 0 1	E+ NCUD
9.50 (DHW)+1ft Clearence+1.5 ft(Pa It means raise the Road from 0 to	(12.0-10	0.3) 1.7	7 Ft= 20.4	inches
Prop. Pavement:			20	
Mill FC-2, entire corridor			SN	
Existing pavement SN			3.99	
Type S overbuild(4" to 12.4")(400	to 1240	lb/sy)	0.00	
OBG 9 *			1.80	
Type 'SP' Struct.Cse. (Level 3)2	" tk	0.44	0.88	
FC5-Friction Course, (80lb/sy), 3/4	"tk	0.00		
the state of the s	De	sign SN	6.67	
*Optional code permite 609 (6"ABC	-3)			- %
		8		
Let Vint	V-2-1		(IRR	
Approved by: PAN 169		red By:		15-6-99
Pav.Des.Eng Date : 5-6-97 Sheet		es.Eng.	Date;	23

APP. B

APPENDIX B HYDROLOGY AND HYDRAULICS

Appendix B-1 COE Analysis of Tamiami Trail

Appendix B-2 Stage Hydrographs and Duration Curves

Appendix B-3 Culvert Service Life Estimation

Appendix B-1 COE Analysis of Tamiami Trail

- Introduction. This interim report has been prepared to investigate and document potential high water conditions along U.S. Highway 41 (U.S. 41) also known as Tamiami Trail caused by construction and operation of the Modified Water Deliveries to Everglades National Park project and Comprehensive Everglades Restoration Project.
- 2. <u>Authorizations and Background</u>. Water regulation in the Everglades and Everglades National Park (ENP) are part of the larger Central and Southern Florida project (C&SF). Phase I of the Comprehensive Plan for the C&SF Project was authorized in 1948, as outlined in House Document No. 643, The remainder of the Comprehensive Plan was authorized by the Flood Control Act of 1954. A C&SF map is attached as Figure 1. The project purposes include flood control, prevention of salt water intrusion, water supply to ENP, municipal and agricultural water supply, groundwater recharge, and preservation of fish and wildlife. Project features include Water Conservation Area (WCA) Nos. 1, 2, and 3. WCA No. 3 is the largest and southernmost of the three WCA's with a total area of about 915 square miles. It is subdivided into WCA No. 3A (760 square miles) and 3B (156 square miles) by Levee 67A and C (L-67A and C). WCA No. 3B is completely encircled by levees and is not regulated. The majority of inflow and outflow consists of direct rainfall, seepage, and evaporation and transpiration. There are some small culverts in L-29 at Coopertown. Water Deliveries to ENP, other that direct rainfall are provided from WCA No. 3A.
- 2.1 In 1962, construction of Levee 29 (L-29) was completed. This was the final feature of WCA No. 3A and enabled control of all flows into Shark River Slough in the northern portion of ENP. After 1962, all flows into the ENP via Shark River Slough were discharged at the S-12 structures.
- 2.2 L-67 Extension (L-67 Ext.) was authorized by the Flood Control Act of 1948 (PL-858; 80th Congress). Its purposes are: to convey water releases through the S-12 structures far enough into the Park to prevent increases in water levels on adjacent private lands above those experienced under prior conditions; and to prevent flooding of U.S. Highway 41. The L-67 Ext. borrow canal was constructed from May 1966 through April 1967 to aid in the implementation of the 1966 Interim Release Schedule for ENP that was agreed upon following a severe drought from 1962 through 1965. The L-67 Ext. borrow canal was designed to provide 1,000 cfs of water to the Park during relatively wet conditions (its conveyance during the dry season is considerably less).
- 2.3 The Flood Control Act of 1965 authorized a plan to provide seasonal flood protection in Southwest Dade County. The plan consisted of levees, canals, water control structures, and pumping stations capable of removing 15 inches of runoff per month plus seepage into the area following a 10-year flood. The approved plan provided for the southward and eastward continuation of the L-67 extension to connect with the L-31W levee at the western edge of the Frog Pond. The plan was designed to enable desirable water levels for winter agriculture in southwest Dade County. Growing recognition of the potential negative environmental impacts of the Southwest Dade project caused the local sponsor to withdraw their support for the project. This project was officially deauthorized after Congress expanded the ENP to include most of the area that would have been protected.
- 2.4 In 1968, the ENP-South Dade Conveyance System was authorized by Congress. It is designed to enable conveyance of flood waters to water supply needs and deliver water to the ENP's Taylor Slough and Canal 111 (eastern panhandle). The Conveyance System was superimposed over the existing flood control system. Design flood control and operation were not altered by the construction of these works.
- 2.5 On December 13, 1989, Congress passed Public Law 101-229, the Everglades National Park Protection and Expansion Act. This law authorizes modification to the Central and Southern Florida project to improve water deliveries to ENP. The purpose of the Act was to increase the level of protection of the outstanding values of Everglades National Park and to enhance and restore the ecological values, natural hydrologic conditions, and public enjoyment of such area by

adding the area commonly known as Northeast Shark River Slough and the East Everglades to Everglades National Park; and assure that the Park is managed in order to maintain the natural abundance, diversity and ecological integrity of native lands and animals, as well as the behavior of native animals, as a part of their ecosystem. The Park was also expanded 107,000 acres to include portions of Northeast Shark River Slough (NESRS). In 1992, as directed by the Act, the U.S. Army Corps of Engineers published a General Design Memorandum for Modified Water Deliveries to Everglades National Park. The Modified Water Deliveries to Everglades National Park Project consists of structural and operational changes to the Central and Southern Florida Project in south Dade County. Specifically, water will be passed through WCA No. 3B into Northeast Shark River Slough through additional structures. Project components include reconnecting WCA No. 3B to 3B by structures through L-67A and gaps in L-67C, and reconnecting WCA No. 3B to Shark River Slough with structures in L-29.

- 2.6 Tamiami Trail (US 41) was completed in the late 1920's. As a source of borrow for Tamiami Trail and a means of conveying water in an east/west direction, the Tamiami Canal was constructed along the north side of the roadway. The original construction plans were not available for review. However, based on a consultants work on the western portion of Tamiami Trail, they estimate that the existing roadway pavement structure consists of a limerock base (10"-12" thick), an asphalt structural course (2"-3" thick), and an asphalt friction course (5/8"-1" thick). For this analysis, it is assumed that the subgrade extends 18" below the crown of the road.
- 3 <u>Purpose of this Study</u>. Due to proposed modifications of the Central and Southern Flordia (C&SF) Project, higher stages in WCA No. 3B and the L-29 borrow canal may potentially cause problems for U.S. Highway 41 (Tamiami Trail). This study was conducted to identify any potential impacts caused by implementation of the Modified Water Deliveries to Everglades National Park project and the Comprehensive Everglades Restoration Plan (CERP) to U.S Highway 41.
- 4. Future Conditions. The Modified Water Deliveries to Everglades National Park project includes the construction of several water control structures in this vicinity. With the construction of S-355A, S-355B, and S-356 and modification of S-333 the total discharge into the L-29 borrow canal would be a maximum of 4,000 cfs. The Comprehensive Everglades Restoration (CERP) (formerly the known as the C&SF Restudy) proposes further modifications to the C&SF project and flows could be higher than the 4,000 cfs proposed by the Modified Water Deliveries to ENP project. In addition these high flows are for long durations (weeks).
- 5. Study Plan. Hydrologic models were used to determine the stage and flow-paths in Everglades National Park for various flows. The South Florida Water Management Model (SFWMM) was used to establish boundary conditions for the two-dimensional RMA-2 model. The SFWMM model is a regional model which extends from Lake Okeechobee to Florida Bay. Water surfaces are computed on a 2 mile by 2 mile grid. The RMA-2 model was used for more detailed modeling in a limited area. Figure 2 shows RMA-2 model related features.. The north-south extent of the model extended from just south of Tamiami Trail to about 15 miles south of the southern terminus of L-67 Ext. The east-west extent extended from just west of L-67 Ext. to about L-31N and the 8 1/2 Square Mile Residential Area. The model boundary is also shown on Figure 3. The RMA-2 model constructed for this effort was calibrated against existing gage data in the area. A description of RMA-2 is found below.
- 6. <u>Model Description</u>. RMA-2 was developed by <u>Resource Management Associates of Davis, California</u>. RMA-2 is a two dimensional, depth averaged, free-surface, finite element program for solving hydrodynamic problems. RMA-2 can be used to compute water surface elevations and flow velocities at nodes; points in a finite element mesh representing a body of water such as a rivers, harbor, or estuary. RMA-2 can perform both steady-state and transient solutions. In other words, the boundary conditions (incoming flowrate, water surface elevation) can vary with time and a solution can be found at a number of time steps. This makes it possible to model dynamic flow conditions caused by fluctuating runoff or tidal cycles. RMA-2 is not applicable to supercritical flow problems. The output from RMA-2 is written to a binary solution file. The file

may contain the solution for one or more time steps depending on whether a steady-state or transient analysis is performed. The solution file can be input to SMS (Surface-Water Modeling System) for graphical display of the results. SMS is a pre- and post-processor for a two-dimensional finite element model and is specifically designed to be used in conjunction with the TABS-MD suite of programs maintained by the U.S. Army Corps of Engineers Waterways Experiment Station (WES). The TABS-MD programs will calculate water surface elevations and flow velocities for shallow water flow problems.

- 7. Existing Conditions. There are a numerous structures, levees, canals, and roads that influence stages and flow paths into and within ENP. (Note: all elevations herein reference the National Geodetic Vertical Datum of 1929 (NGVD29)) These features are shown on Figure 2.
- 7.1 L-67 Extension (L-67 Ext.) extends from S-333 to approximately 11 miles due south. The levee crown ranges from elevation 13 to 15 ft. There is a borrow canal on the levee's west side from which the levee was constructed. Canal invert elevations range from about -11.0 to -3.0 ft. and canal top widths range from about 30 to 60 ft. See Figure 3 for structure and canal locations.
- 7.2. There are 19 sets of culverts under Tamiami Trail in the approximately 11 mile stretch of highway between S-333 and S-334. Each culvert set consists of one to four culverts with diameters ranging from 42-inches to 60-inches. Culvert invert elevations and lengths are typically about 4 ft. and 60 ft., respectively.
- 7.3 Centerline elevations for Tamiami Trail in this reach range from about 10.2 ft to 12.2 ft based on data provided by FDOT. The average centerline elevation is about 10.9 ft.
- 7.4 Topographic Data: Survey lines south of Tamiami Trail in the ENP were used to build the grid for the RMA-2 model. These transects (x,y,z) were obtained from a 1981 survey by the ENP. As-builts for the L-29 Borrow Canal enlargement August 1975 were also used in the model.
- 7.5. Culverts: Culvert data was furnished by FDOT. There are 19 sets of culverts under Tamiami Trail between FDOT stations 732+10.0 and 1298+5.0 (S-333 to S-334) with each group having between 1 & 4 barrels (55 total barrels).
- 8. Future Flow Conditions: The RMA-2 model described above was calibrated to known water surfaces and flow rates at gages. The RMA-2 model then was given a variety of flowrates to determine associated water levels.. Flow rates and downstream boundary conditions were obtained from the SFWMM 2X2 runs done for the Central and Southern Florida (C&SF) Restudy selected alternative Alt13DR. Table 1 contains the flows and downstream boundary conditions used in the RMA-2 models.
- 9. Model Results. Model results for the RMA-2 runs are shown in Table 2 below. Results are taken at the south side (ENP) side of Tamiami Trail. Water levels on the north side (L-29) will be higher due to the resistance (headloss) of the culverts to passing these higher flows. Table 2 also shows the expected L-29 Borrow Canal stage based on the rated capacity of the culverts.
- 10. Alternative Considered. For this analysis, four bridges were added to the existing Tamiami Trail to permit water to flow from L-29 Borrow Canal to Everglades National Park. The same nine flows were examined to determine the effects of adding additional conveyance area through Tamiami Trail. For each flow, the RMA-2 model was run to determine the stage south of Tamiami Trail and the corresponding stage in L-29 Borrow Canal. The four bridges were selected on the following subjective criteria: proximity to control structures (S-333. S355A&B, S-356); downstream obstructions (vegetation, airboat camps, etc); low areas in the road; and distribution along L-29 Borrow Canal.

- 11. <u>Conclusion</u>. Graphical representations of the flows with and without bridges are shown on Figures 4 and 5. The bridges greatly reduce the L-29 Borrow Canal stages for the expected high flows.
- 12. <u>CERP Compatibility</u>. As a final check of this analysis, the RMA-2 results were compared to the modeling done for the CERP. Stage duration curves and hydrographs for cells immediately south of Tamiami Trail were used in this comparison. The output from the CERP modeling is attached as Annex A. These graphs indicate RMA-2 model and CERP 2X2 model results compare favorably.

Table 1

Tamiami Trail Modeling Boundary Condition at Cell 1724

		Stage
Event	Flow (cfs)	2X2
1-yr	597	7.15
2-yr	1600	7.94
5-yr	2250	8.23
10-yr	2700	8.39
20-yr	3150	8.56*
50-yr	3770	8.68
100-yr	4270	8.78
200-yr	4800	8.88
500-yr	5550	9.01

^{*} Estimated stage.

Note: All elevations are in feet referenced to the National Geodetic Vertical Datum of 1929 (NGVD29).

Table 2

Tamiami Trail Modeling Without Project

Event 1-yr 2-yr 5-vr	Flow (cfs) 597 1600 2250	Stage South US 41 RMA-2 7.39 8.20 8.54	L-29 Canal Stage with Culverts Only (1) 7.50 8.32 8.70
	2700	8.74	9.00
	3150	8.90	9.30
	3770	9.15	9.65
	4270	9.21	9.82
	4800	9.31	10.05
	5550	9.43	10.40 (2)

Note: All elevations are in feet referenced to the National Geodetic Vertical Datum of 1929 (NGVD29).

Theoretical rating through the culverts
 Water will begin overtopping the road at approximate elevation 10.13 ft.

Table 3

Tamiami Trail Modeling With Four Bridges

L-29 Canal Stage	with Bridges	7.39	8.20	8.55	8.75	80.8	9.23	9.30	9.36	9.58
Stage South US 41										
	Flow (cfs)									
	Event	1-yr	2-yr	5-yr	10-yr	20-yr	50-yr	100-yr	200-yr	500-yr

Note: All elevations are in feet referenced to the National Geodetic Vertical Datum of 1929 (NGVD29).

Water Surface Elevation L-29 Borrow Canal vs. Tamiami Trail Stationing C&SF Comprehensive Review Plan (Restudy) **Existing Conditions**

Water Surface Elevation L-29 Borrow Canal vs. Tamiami Trail Stationing C&SF Comprehensive Review Plan (Restudy) Proposed Alternative - Four Bridges

Appendix B-2 Stage Hydrographs and Duration Curves

Appendix B-2

Stage Hydrographs and Duration Curves

		₩ X5-]		Eax #
	Christania a Tonau	# 00049		# enort
	Christopher T Smith	co	TRANS PLAN	COLDOPI- MIGMI
7. —	11/02/2000 08:49 AM	MOMA JANISFA	HAETLER	105 YOUC OL
		Osto 120€ C 00 Deges ► 5	1737	stoM xs7 *Ji-f209
To: co:	ribingham@pbsj.com@exchange			
	L-29 Canal Data \$333 & \$334			
Ralph -				
Alteched is the ea locations	d are data for L-29 canal as requested (asoli). st elevation. You can interpolate between the	S-333 tailwater is the western ele reading to determine the stage at	evation and S- t the boring	334
Chris				
Subject: As reque S333 Tai	Christopher T Smith/CESAJ/SAJ02@CESAJ S333 & S334 sted. Iwater: June - July 2000 asc adwater: June - July 2000	J02 on 11/02/2000 08:47 AM	REC TRANSPORT NOV (PBS.L. NC. R. D. NC.	TATION DESIGN 7 2000 WINTER PARK
Jenk Ralah	Should be sure			

JE COAST CANAL 6/6333/BLEV-TAILI/1DAYI/ RTS Ver:999 Prog:DSSMAT LW:02NOV00 07:32:06 Tag:T14295 Prec:0 Starl: 31MAY2000 at 2400 hours; End: 01AUG2000 at 2400 hours; Number: 63 Units: FT-NGVD Type: INST-VAL 31MAY2000, 2400; 7.03 01JUN2000, 2400; 6.93 02JUN2000, 2400; 6.91 03JUN2000, 2400; 6.89 04JUNZ000, 2400; 6.88 05JUN2000, 2400; 6.87 D6JUN2000, 2400; 6.97 07JUN2000, 2400: 6.95 08JUN2000, 2400; 6.91 09JUN2000, 2400; 7.03 10JUN2000, 2400; 7.01 11JUN2000, 2400; 7.07 12JUN2000, 2400; 7.10 13JUN2000, 2400; 7.09 14JUN2000, 2400; 7.07 15JUN2000, 2400; 7.31 16JUN2000, 2400; -901.00 17JUN2000, 2400; -901.00 18JUN2000, 2400; 7.28 19JUN2000, 2400; 7.28 20JUN2000, 2400; 7.29 21JUN2000, 2400; 7.29 22JUN2000, 2400; 7.15 23JUN2000, 2400; 7.15 24JUN2000, 2400; 7.24 25JUN2000, 2400; 7.20 26JUN2000, 2400; 7.25 27JUN2000, 2400; 7.28 28JUN2000, 2400; 7.21 29JUN2000, 2400; 7.20 30JUN2000, 2400; 7.19 01JUL2000, 2400; 7.18 02JUL2000, 2400; 7.19 03JUL2000, 2400; 7.25 04JUL2000, 2400; 7.25 05JUL2000, 2400; 7.26 OGJUL2000, 2400; 7.27 07JUL2000, 2400; 7.35 08JUL2000, 2400; **7.2**9 09JUL2000, 2400; 7.30 10JUL2000, 2400; 7.33 11JUL2000, 2400; 7.32 12JUL2000, 2400; 7.32 13JUL2000, 2400; 7.30 14JUL2000, 2400; 7.29 15JUL2000, 2400; 7.30 16JUL2000, 2400; 7.28 17JUL2000, 2400; 7.17 18JUL2000, 2400: 7.11 19JUL2000, 2400; 7.07 20JUL2000, 2400; 7.07 21JUL2000, 2400; 7.13

22JUL2000, 2400;	7.16
23JUL2000, 2400;	7.17
24JUL2000, 2400;	7.19
25JUL2000, 2400;	7.12
26JUL2000, 2400;	7.09
27JUL2000, 2400:	7.06
28JUL2000, 2400;	7.03
29JUL2000, 2400;	7.04
30JUL2000, 2400;	7.03
31JUL2000, 2400;	6.89
01AUG2000, 2400;	6.99
END FILE	

IE COAST CANALS/S834/BLEV-HEAD//1DAY// RTS Ver:999 Prog:085MAT LW:02NOV00 07:32:08 Tag:T14296 Prec:0 Start: 31MAY2000 at 2400 hours; End: 01AUG2000 at 2400 hours; Number: 63 Units: FT-NGVD Type: INST-VAL 31MAY2000, 2400: 7.21 01JUN2000, 2400; 7.14 02JUN2000, 2400; 7.14 03JUN2000, 2400; 7.10 04JUN2000, 2400; 7.09 05JUN2000, 2400; 7.07 06JUN2000, 2400; 7.11 07JUN2000, 2400; 7.13 08JUN2000, 2400: 7.14 09JUN2000, 2400; 7,21 10JUN2000, 2400; 7.19 11JUN2000, 2400; 7.24 12JUN2000, 2400: 7.29 13JUN2000, 2400; 14JUN2000, 2400; 7.27 7.25 15JUN2000, 2400; 7.47 16JUN2000, 2400; -901.00 17JUN2000, 2400; -901.00 18JUN2000, 2400; 7.47 19JUN2000, 2400; 7.48 20JUN2000, 2400; 7.49 21JUN2000, 2400; 7.A7 22JUN2000, 2400; 7.36 23JUN2000, 2400; 7.35 24JUN2000, 2400; 7.38 25JUN2000, 2400; 7.39 26JUN2000, 2400; 7.43 27JUN2000, 2400; 7.44 28JUN2000, 2400; 7.40 28JUN2000, 2400; 7.41 30JUN2000, 2400; 7,38 01JUL2000, 2400; 7.38 02JUL2000, 2400; 7.45 03JUL2000, 2400; 7.44 04JUL2000, 2400; 7.46 O5JUL2000, 2400; 7.45 06JUL2000, 2400; 7.45 07JUL2000, 2400; 7.53 DBJUL2000, 2400; 7.49 09JUL2000, 2400; 7.49 10JUL2000, 2400; 7.52 11JUL2000, 2400; 7,52 12JUL2000, 2400: 7,51 13JUL2000, 2400: 7.51 14JUL2000, 2400; 7.48 15JUL2000, 2400; 7.48 16JUL2000, 2400; 7.47 17JUL2000, 2400; 7.37 18JUL2000, 2400; 7.31 19JUL2000, 2400; 7.27 20JUL2000, 2400; 7.26 21JUL2000, 2400; 7.32

EAST

22JUL2000, 2400; 23JUL2000, 2400; 24JUL2000, 2400; 25JUL2000, 2400; 25JUL2000, 2400; 27JUL2000, 2400; 28JUL2000, 2400; 29JUL2000, 2400; 30JUL2000, 2400; 31JUL2000, 2400; 01AUG2000, 2400; END FILE	7.35 7.38 7.34 7.31 7.29 7.25 7.22 7.24 7.20 7.17 7.18
--	--

ANNEX A CERP Model Results

CENTRAL AND SOUTHERN FLORIDA PROJECT **COMPREHENSIVE REVIEW STUDY**

FINAL INTEGRATED FEASIBILITY REPORT AND PROGRAMMATIC ENVIRONMENTAL IMPACT STATEMENT

Run date: 01/14/99 09:23:17 For Planning Purposes Only SFWMM V3.5

Appendix B-3 Culvert Service Life Estimation

Corrosion Research Laboratory

Culvert Service Life Estimator

Project Name:

Tamiami Trail Evaluation

Work Program Item Number:

State Job Number: Federal Job Number:

County:

Dade

Elevation:

Station:

CB-.5(S-3)

Designer:

pH

9.45

Design Life (years)

Resistivity

14368

25

Chlorides

16

Sulfates

18

Diameter

48

Type Of Culvert

Computed Service Life (years)*

CONCRETE, Typical Dry Cast

360

POLYETHYLENE AND PVC

50

ALUMINUM CANNOT BE USED

ALUMINIZED STEEL CANNOT BE USED

GALVANIZED STEEL CANNOT BE USED

^{*} This program is intended for use as an environmental durability estimator ONLY. It is the designer's responsibility to choose the proper culvert to meet all structural and hydraulic requirements.

Corrosion Research Laboratory

Culvert Service Life Estimator

Project Name:

Tamiami Trail Evaluation

Work Program Item Number:

State Job Number: Federal Job Number:

County:

Dade

Elevation:

Station:

CB-.5(S-6)

Designer:

pH

7.67

Design Life (years)

Resistivity

2096

25 Chlorides

62

Sulfates

40

Diameter

48

Type Of Culvert	Computed Service Life (years)*
CONCRETE, Typical Dry Cast	360
16 ga. ALUMINUM	173
16 ga. ALUMINIZED STEEL	79
POLYETHYLENE AND PVC	50
16 ga. GALVANIZED STEEL	42

This program is intended for use as an environmental durability estimator ONLY. It is the designer's responsibility
to choose the proper culvert to meet all structural and hydraulic requirements.

Corrosion Research Laboratory

Culvert Service Life Estimator

Project Name:

Tamiami Trail Evaluation

Work Program Item Number:

State Job Number: Federal Job Number:

County:

Dade

Elevation:

Station:

CB-8.5(S-5)

Designer:

pH 7.95

Design Life (years)

Resistivity

2833

25

Chlorides

66

Sulfates

93

Diameter

48

Type Of Culvert	Computed Service Life (years)*
CONCRETE, Typical Dry Cast	360
16 ga. ALUMINUM	184
16 ga. ALUMINIZED STEEL	85
POLYETHYLENE AND PVC	50
16 ga. GALVANIZED STEEL	48

^{*} This program is intended for use as an environmental durability estimator ONLY. It is the designer's responsibility to choose the proper culvert to meet all structural and hydraulic requirements.

Corrosion Research Laboratory

Culvert Service Life Estimator

Project Name:

Tamiami Trail Evaluation

Work Program Item Number:

State Job Number: Federal Job Number:

County:

Dade

Elevation:

Station:

CB-8.5(S-3)

Designer:

pH

9.59

Design Life (years)

25

Resistivity

9,59

Chlorides

8811 52

Sulfates

52

Diameter

48

Type Of Culvert

Computed Service Life (years)*

CONCRETE, Typical Dry Cast

360

POLYETHYLENE AND PVC

50

ALUMINUM CANNOT BE USED

ALUMINIZED STEEL CANNOT BE USED

GALVANIZED STEEL CANNOT BE USED

^{*} This program is intended for use as an environmental durability estimator ONLY. It is the designer's responsibility to choose the proper culvert to meet all structural and hydraulic requirements.

FACSIMILE TRANSMITTAL SHEET

I AW ENGINEERING & ENVIRONMENTAL SERVICES, INC.

5845 NW 158th Street, Mia: Tel: (305) 826-5588	mi Lakes, Florida 33014 Fax: (305) 826-1799 Email: tmcdanie@law	
To: Mark Jensen		
Company: PBSJ	Date transmitted 8-22-00	
Fax Number: <u>1-407-647-1283</u>	Telephone: (305) 826-553	38
Subject:Tamiami Trail Corrosivity Tests_	Fax Number: (305) 826-179	9
No. pages transmitted (incl. cover)5	Hard Copy to Follow: Yes	_ No
CC:		-
Urgent_ For Review X Please Comment Mark There are the 4 correctivity test results. Two to		
These are the 4 corrosivity test results. Two te	SIS are in the limition in and 2	iests are in
the peat layer.		
If you have any other questions or comments pl G. Thomas McDaniel, PE Principal Geotechnical Engineer	ease contact me.	
CONFIDENTIALITY NOTICE: This message is intended only for may contain information that is privileged, confidential, and exemptessage is not the intended recipient, or the employee or agent respeare hereby notified that any dissemination, distribution, or copying of this communication in error, please notify as immediately by telephore the U.S. Postal Service. Thank you.	pt from disclosure under applicable law. If the consider for delivering the message to the intended fixed communication is strictly prohibited. If you	ne reader of this ad recipient, you bu have received
If transmission is not received in good order, please call	McDaniel	r'o
		Transical N Design
		AUG 2 2 2000
		M. Jansen
		F. 9

LAWENG000282 Ricardo Bernai Law Engineering (MiamiLakes) √ 5845 NW 158th Street Miami Lakes, FL 33014

Site Location/Project
Tamiami Trail & Krome Avenue .5,8.5,6,2 40700-0-2369

Page 1 August 17, 2000 Submission # 8000760 Order # 74170 FDEP CompQAP# 990102 FL-DOH Certification# E86349, 86413, 86565

Sample I.D.: CB-.5(S-3) 3.0 1.4.4 Sart Collected: 07/21/00 10:00 Fill -Received: 08/15/00 16:00 Limas Collected by: Client

PARAMETER	RESULT	UNITS	METHOD	DETECTION	DATE EXT.	DATE ANALY.	ANALYST
Sulfate	18	mg/Kg	ASTM D4130	1.0	08/16/2000	08/16/2000	мс
Chionde	16	mg/Kg	ASTM D512	10.0	08/16/2000	08/16/2000	мс
plf	2.45		ASTN G-51	1.0	08/16/2000	08/16/2000	KOD
ASTM-G57 Resistivity in SOIL expres	ssed as Ohm*em	1	MEDF	1			
Resistivity (As Received)	15552	D*cm.	ASTM G-57	1.000	08/17/2000	08/17/2000	мс
Resistivity (Saturated)	14368	Ω*cm.	ASTM G-57	1.000	08/17/2000	08/17/2000	мс

the PQL shall be used.

Certs: Al. =#41180, Ct. =#PH0217, Ks. =#E270 + E1245, Ky. =#90087, La. =#9601, Md. =#271, Ma. =#M-FL535 NC. =#539, ND. =#R163, OK. =#9523, SC. =#96023, Tn. =#TN02826

Authorized Laboratory Management

^{***}BDL: Indicates Analyte is Below Detection Limit***-MEDF: Marrix Effected Dilution Factor***

Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field

****Qualifier following result conforms to FAC 62-160 Table 7*********Unless otherwise noted, mg/Kg denotes wet weight***

****62-770: If the MDL using the most sensitive and currently available technology is higher than a specific criterion,

LAWENG000282 Ricardo Bernai Law Engineering (M(amiLakes) √ 5845 NW 158th Street Miami Lakes, FL 33014

Site Location/Project Tamiami Trail & Krome Avenue .5,8.5,6,2 40700-0-2369

Page 4 August 17, 2000 Submission # 8000760 Order # 74173 FDEP CompQAP# 990102 FL-DOH Certification# E86349, 86413, 86565

7.5 to 9.0 ft

Sample I.D.: CB-8.5(S-5) Collected:

07/24/00 08/15/00

08:10

. .. .

16:00

Received: Collected by: Client

PARAMETER	MESULT	UNITS	METHOD	DETECTION LIMIT	DATE EXT.	DATE ANALY.	ANALYSI
Sulfate	93	mg/Kg	ASTM D4130	1.0	08/16/2000	08/16/2000	мс
Chloride	66	mg/Kg	ASTM D512	10.0	08/16/2000	08/16/2000	мс
на	7.95		ASTM G-51	1.0	08/16/2000	08/16/2000	KOD
ASTM-G57 Resistivity in SOIL expres	ssed as Ohm*em		MEDF	1 1			
Resistivity (As Received)	2833	Ü+cm.	ASTN G-57	000.1	08/17/2000	08/17/2000	MC
Resistivity (Saturated)	2227	Ω*cm.	ASTM G-57	1.000	08/17/2000	08/17/2000	мс

^{***}BDL: Indicates Analyte is Below Detection Limit***MEDF: Matrix Effected Dilution Factor***

Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field

the PQL shall be used.

Certs:Al. =#41180, Ct. =#PH0217, Ks. =#E270 + E1245, Ky. =#90087, La. =#9601, Md. =#271, Ma. =#M-FL535 NC. = #539, ND. = #R163, OK. = #9523, SC. = #96023, Tn. = #TN02826

Authorized Laboratory Management

Way Khan

LAWENG000282 Ricardo Bernai Law Engineering (Miamilakes) √ 5845 NW 158th Street Miami Lakes, FL 33014

Site Location/Project Tamiami Trail & Krome Avenue .5,8.5,6,2 40700-0-2369

Page 3 August 17, 2000 Submission # 8000760 Order # 74172 FDEP CompQAP# 990102 FL-DOH Certification# E86349, 86413, 86565

Sample I.D.: CB-8.5(S-3) 3 to 4.5 ft. 08:06 07/24/00 Collected: Limarock Received: 08/15/00 16:00

Collected	by:	Client
-----------	-----	--------

PARAMETER	RESULT	UNITS	METHOD	DETECTION	DATE EXT.	DATE ANALY.	ANALYST
Sulfate	52	mg/Kg	ASTM D4130	1.0	08/16/2000	08/16/2000	МС
Chloride	52	mg/Kg	ASTM D512	10.0	08/16/2000	08/16/2000	мс
pH	9.39		ASTM G-51	1.0	04/16/2000	08/16/2000	KOD
ANTM-G57 Resistivity in SOIL expres	sed as Ohm*cm.	1	MEDF	1			
Resistivity (As Received)	8811	Ω*cm.	ASTM G-57	1.000	08/17/2000	08/17/2000	мс
Registivity (Subtrated)	8811	Q*cm.	ASTM G-57	1.000	08/17/2000	08/17/2000	мс

^{***}BDL: Indicates Analyte is Below Detection Limit***MEDF: Matrix Effected Dilution Factor***

Authorized Laboratory Management

Wey of han

^{***62-770:} If the MDL using the most sensitive and currently available technology is higher than a specific criterion.

the POL shall be used. Cens:Al. =#41180, Ct. =#PH0217. Ks. =#E270 + E1245, Ky. =#90087, La. =#9601, Md. =#271, Ma. =#M-FL535 NC. =#539, ND. =#R163, OK. =#9523, SC. =#96023, Tp. =#TN02826

LAWENG000282 Ricardo Bernai Law Engineering (MiamiLakes) √ 5845 NW 158th Street Miami Lukes, FL 33014

Site Location/Project Tamiami Trail & Krome Avenue .5,8.5,6,2 40700-0-2369

August 17, 2000 Submission # 8000760 Order # 74171 FDEP CompQAP# 990102 FL-DOH Certification# E86349, 86413, 86565

Sample L.D.; CB-.5(S-6) 7. 5 to 2.01+ Peat 07/21/00 08/15/00 10:15 Collected:

16:00 Received: Collected by: Client

PARAMETER	RESULT	UNTTS	METHOD	DETECTION LIMIT	DATE EXT.	DATE ANALY.	ANALYST
Sulface	45	та/Ке	ASTM D4130	1,0	08/16/2000	08/16/2000	MC
Chloride	62	mg/Kg	ASTM DS12	10.0	08/16/2000	08/16/2000	мс
рн	7.67		ASTM 0-51	1.0	08/15/2000	08/16/2000	KOD
ASTM-G57 Resistivity in SOIL expres	ssed as Ohmecm		MEDF	1			
Resistivity (As Received)	2096	Ω*cm.	ASTM G-57	1.000	08/17/2000	08/17/2000	мс
Resistivity (Saturated)	2096	O*cm.	ASTM G-57	1.000	08/17/2000	08/17/2000	MC

^{***}BDL: Indicates Analyte is Below Detection Limit***MEDF: Matrix Effected Dilution Factor***

aboratory Management

the POL shall be used.

Certs: Al. =#41180, Ct. =#PH0217, Ks. =#E270 + E1245, Ky. =#90087, La. =#9601, Md. =#271, Ma. =#M-PL535 NC. =#539, ND. =#R163, OK. =#9523, SC. =#96023, Tn. =#TN02826

APPENDIX C - PAVEMENT INFORMATION

Appendix C-1	Florida DOT Pavement Information
Appendix C-2	Falling Weight Deflectometer Results
Appendix C-3	IMS GPR and Distress Data
Appendix C-4	Pavement Design Calculations
Appendix C-5	Pavement Core Data

View from Levee L-29 looking SE.

View from south shoulder, looking NE

View of test location DCB-100, approximately at Station 771+00.

Typical longitudinal crack in outside wheelpath, Eastbound lane.

View of test location DCB-5, approximately at Station 1280+20.

View of WB Outside wheelpath and test location that was not used. Approximate station 1227+40.

View of test location DCB-20, approximately at Station 1200+10.

View of test location CB-25, approximately at Station 1173+00.

Appendix C-1 - Florida DOT Pavement Information

- 1. Historic Maintenance Costs
- 2. Typical Funded Annual Maintenance
- 3. Minimum Overlay Calculations
- 4. Pavement Condition Ratings- Florida DOT

4/16/00 FY 01/02 MAINTENANCE BUDGET NEEDS TAMIAMI TRAIL

ESTIMATE BASED ON MP 13.131 TO MP 24.410

		Total
ctivity		Needs
Number	Description	\$
411	Plant Mix Patching (Manual)	\$4,682.08
412	Plant Mix Patching (Mech.)	\$2,216.70
414	Base Repair	\$401.64
421	Pressure Grouting	\$266.51
423	Concrete Pavement Joint Repair	\$0.00
424	Concrete Slope Pavt Joint Repair	\$0.00
425	Concrete Pavement Surface Repair	\$0.00
431	Motor Grader Operation	\$0.00
432	Rep N-paved Shld, Slopes, Ditches (\$2,508.92
433	Sodding	\$1,933.04
435	Seeding, Fertilizing and Mulching	\$1,223.90
436	Reworking Shoulders	\$4,338.82
437	Misc. Slope and Ditch Repair	\$4,441.07
451	Clean Drainage Structures	\$305.83
456	Repair or Replace Storm Dr, Side Dr	\$553.85
457	Concrete Repair	\$0.00
459	Concrete Sidewalk Repair	\$0.00
461	Roadside Ditches - Clean & Reshape	\$5,063.46
464	Outfall Ditches - Clean & Repair	\$0.00
471	Large Machine Mowing	\$519.58
482	Slope Mowing	\$17,524.39
484	Intermediate Machine Mowing	\$80.07
485	Small Machine Mowing	\$74.85
487	Weed Control(Manual)	\$0.00
489	Wildflowers	\$148.51
490	Fertilizing	\$1,074.76
492	Tree Trimming and Removal	\$2,583.83
493	Landscape Area Maintenance	\$0.00
494	Chemical Weed and Grass Control	\$2,510.53
497	Chemical Weed and Grass Control (Br	\$296.03
519	Delineators	\$1,065.56
520	Signs (Ground Signs 30 sf or less)	\$864.23
521	Signs (Ground Signs over 30 sf and	\$0.00

522 Sign Cleaning	\$40.67
526 Guardrail Repair	\$22,456.94
527 Fence Repair	\$0.00
530 Attenuator Inspect. & Serv.	\$0.00
531 Attenuator Repair	\$0.00
532 Pavement Striping (Large Machine)	\$9,098.90
534 Pavement Symbols	\$327.72
537 Raised Pavement Marker Replacement	\$3,768.44
540 Graffiti Removal	\$0.00
541 Roadside Litter Removal	\$4,409.43
542 Road Sweeping (Manual)	\$0.00
543 Roadsweeping (Mech.)	\$439.48
545 Edging and Sweeping	\$0.00
781 Weight Station Maintenance	\$0.00
805 Bridge Joint Repair	\$0.00
806 Bridge Deck Maintenance And Repair	\$0.00
810 Bridge Handrail Maintenance And Rep	\$0.00
825 Superstructure Maintenance And Repa	\$0.00
845 Substructure Maintenance And Repair	\$0.00
859 Channel Maintenance	\$0.00
861 Routine Bridge Electrical Maintenan	\$0.00
865 Routine Bridge Mechanical Maintenan	\$0.00
869 Movable Bridge Structural Maintenan	\$0.00
995 Maintenance Support Services	\$4,760.99

Total \$99,980.72

JEB BUSH GOVERNOR

THOMAS F. BARRY, JR. SECRETARY

MEMORANDUM

DATE:

August 21, 2000

TO:

Barbara Culhone, Environmental Administrator

FROM:

Guy Gladson, District Drainage Permit Engineer

COPIES:

Gus Pego, Ron Steiner, John Slaton

SUBJECT:

Maintenance Costs on Tamiami Trail (10 mile portion starting

1 mile west of Krome Avenue)

Attached are the FDOT's average estimated annual maintenance activity costs for the 10 mile portion of concern on the Tamiami Trail. The costs are based on an average of the last 3 years of maintenance performed on Tamiami Trail (Section 87110). This information was obtained from the Maintenance Management System (MMS) and is only an estimate. Inspection costs are not identified through the MMS, therefore an additional 15% was added to the actual activity costs.

Maintenance efforts associated with unpaved shoulder and asphalt repair are due to mainly failing shoulders. Maintenance expects these costs to significantly increase in the future as the sub-base continues to fail.

Please feel free to call John Slaton (305-470-5358) or myself (305-470-5372) for further information or clarification.

GG/ro

TAMIAMI TRAIL MAINTENANCE DOILBY Analysis 18-Aug-60

AVERAGE ANNUAL COST FOR TEN MILES ONLY

ACTIVITY	In-house Maintenance MMS	Contract Maintenance Costs	TOTAL Estimate	Current Schedule	
Mowing	9	030'025	\$22,060	Slope Mowing-4 times a year Tree Trimming with Slope Mower-4 time a year	
Ltter Removal	0\$	\$3,392	\$3,392	Litter removal- 12 times a year	
Guardrail repair	\$10,350	\$1,328	\$.1,678	As needed basis	
Sign rebair	\$1,243	04	\$1,243	As needed basis	
Herbicide	\$545	03	\$545	Once a year	
Bridge Repairs	\$125	94	\$125	As needed basis	
Asphall Repair	\$251	0 ;	\$251	As needed basis	
Unpaved Shoulder Repair	\$1,151	24	\$1,151	As naeded hasis	
TOTAL	\$13,665	\$21,388	\$35,054	35,054 × 11,079 55,757	
Estimates based on 3 year activity average costs, except mowing costs based on last year Contract dollars. Mowing cycles are expected to increase in future years wher current contract expires.	vity average costs, el increase in future ye	xcept mowing costs : ars wher current con	based on last year Co tract expires.	ntract dollars. 38,600 39,500	26,500
Costs kased on MMS cost information. Tamiami Trait (section 87110) is 25.715 miles in total length. This report took average cost per mile of section 87110 and prorated to ten miles to obtain the costs above.	mation.Tamiami Tra ection 87110 and pro	it (section 87110) is a praise to make to	25.715 miles in total la obtair the costs above	ength. This report for 11 m. 1-m of e.e. WI with	9.
to salinell widden extraor landon on hand linester.		the seller existing appropriate solders and	and other these years		

Guardrail based on actual repeirs within limits of ten miles section, average over three years.

Striping for the ten mile section is in good condition. Striping schedule once every four years.

FLEXIBLE PAVEMENT DESIGN SUMMARY SHEET Preliminary, subject to change

	Prepared by: Roberto Perez		Date: May		-T
	W.P.I. No		SR/9 <u>0/US4</u>	1/Tamiami 1	rial
	State Project No.87110-		From 11 mi	iles w of S	R 997
	F.A.P. No		To SR 997	Krome Ave	
	County Miami-Dade		Project Le	ength <u>11 mi</u>	les
	Opening Year 2002		LBR_40S	ssv_ 	
	Design Year 2022		Mr <u>84 M</u> pa	(12 PSI)	
	80 KN/eq.Loads 3,100,000		%Reliabili	ity <u>90</u>	
	SN Required 3.45		Design Spe	ed 55 MPH	
	Type of Work and location: Reconstruc			_	
	from 10.3 to 12.0 Ft NGVD, Prop. Pro				
	Existing Pavement:				
-	Sub-grade Stabilization (LBR 40) 12" Limerock Base 12" tk. 12" Type S Asphaltic Conc. 3.5" tk 3.5		Coef. 0.08 0.18 0.25 0.00	0.96 2.16 0.87 0.00	J) 600
	Prop. Profile Grade: 9.50 (DHW)+1ft Clearence+1.5 ft(Pav't It-means raise the Road from 0 to (1	tk.	+cross slc 10.3) 1.7	3.99 ope=12.0 Ft Ft= 20.4 i	NGVD nches
	Prop. Pavement: Mill FC-2, entire corridor				
	Existing pavement SN Type S overbuild(4" to 12.4")(400 to OBG 9 * Type `SP' Struct.Cse.(Level 3)2" to FC5-Friction Course,(80lb/sy),3/4"tk	k	0 lb/sy) 0.44 0.00 Design SN	SN 3.99 0.00 1.80 0.88 0.00 6.67	
	*Optional code permite 609 (6"ABC-3)				
		Dist	urred By:	ARCan Date:/	5-6-99

LUCKLER DEPARTMENT OF INAMSPURIALION

OF INGUSTORIALIUM

ALL SYSTEM PAVEMENT CONDITION FORECAST

PAVEMENT IMPROVEMENT PROJECTS IN FM WPA TENTATIVE PLAN -- 2001 - 2006, EXTRACTED ON &EXDATE SORT BY RDWYID MILEPOST R ASCENDING L DESCENDING

	FUTURE	2002	(REG)	ი იკო∘ი,	
	1988		4.00	o minor o o o o o o o o o o o o o o o o o o	
	1987	2000	4.00	0.001 0.001 0.002 0.003 003	9.0
	1986	1999	4. 8. c.	0.00 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.6
	1985	1998		10.0 10.0 10.0 10.0 10.0	10.0
	1984	1997		9.0 10.0 10.0 10.0 10.0 10.0 10.0	0.8
	1983	1996	4.6.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0
	1982	1995	7.0 8.6 7.0	0 4 0 0 4 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0	0.0
	1981	1994	7.0 8.5 7.0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0
ADE	1980	1993		8.0 8.0 8.0 7.1	0.,
ITY = I	1979	1992	8.4 7.8 8.0	10.0 7.7 9.0 5.1* 6.0* 7.3 7.0 8.0	
COUNT	978	1991		0.40% 0.00% 0	2.0
CT = 6	SURVEYED YEAR 1976 1977 1	1990	9.4 8.0	0 8 0 8 5 5 7 8 8 9 8 5 7 7 8 8 9 4 7 7 8 8 9 9 7 7 7 8 8 9 9 7 7 7 8 8 9 9 9 7 7 7 8 9 9 9 9	2.0
DISTRIC	SURVEYE 1976 1	1 6861	9.4	0 8 8 9 8 8 7 5 6 7 5 9 7 8 8 7 8 7 8 7 8 9 9 9 9 9 9 7 8 7 8	
,	SSS		5 5	PUDE RUDE RUTTING PUTTING PUTT	
	PE DIS	(G)	1 CRACKI 5200 RIDE 11.5 RUTTIN	0221 CRACKI RIDE RUTTIN 5200 RIDE 11.5 RUTTIN 0222 CRACKI RIDE 1 CRACKI 1 C	2
	RDWYID BMP EMP RW SYSTEM TYPE DISTRE SR US G_BMP G_EMP LN SPEED AADT RATING INTERSECT AT (MP SIDE) \$T =====	ITMSEG-P W_BMP W_EMP RW FY-P WKMX-P CONTRACTOR (YEARPAVEMENT ONE YR OLD) ITMSEG-F W_BMP W_EMP RW FY-F WKMX-F	5 52		
	EMP RW : EMP LN : DE)	EMP RW AVEMENT EMP RW	.131 C 2 AL(10.4C	698 C	
	BMP G BMP G	YEARP	8.432 13 DVER CAN	3.920 13 N CONSTE 3.131 24 3.200 24 RUCTION 3.131 24 4.410 25 4.420 25 N CONSTR	
	ID US G RSECT AT	ITMSEG-P W CONTRACTOR (ITMSEG-F W	87110000 8.432 13.131 C 90 41 2 5 BRIDGE #29-OVER CANAL (10.4C):	2499241 3.920 13.220 C 1995 (PAN AMERICAN CONSTRUCTION CO(1998) (B7110000 13.131 24.410 C 15.99 40 41 410 C 1991, A19 C 495121 13.200-24.400 C 1991, A19 C 2002 4952121 13.131 24.410 C 2002 4056361 13.131 24.410 C 2002 87110000 24.410 25.715 C 1 90 41 25.715 C 1 2 55 SIDE ROAD(24.4C) 2499231 24.420 25.698 C 1995 PAN AMERICAN CONSTRUCTION CO(1998)	
: :	SR SR INTERS	ITMS CONT ITMS	8711 90 BRII	2499 871 871 8495 871 871 871 871 871 871 871 871	

http://www.dot.state.fl.us/pavementmanagement/pcs/pcscn87.htm

FLORIDA DEPARTMENT OF TRANSPORTATION FLEXIBLE PAVEMENT CONDITION SURVEY -- 1999 SORT BY DISTRICT ROWYLD MILEPOST R ASCENDING L DESCENDING

D	RDWY1D	BEGIN H.P.	M.P.	NET LENGTI	H D		SF	CNO.	US NO		O YI		RAVI	EL	A	IRI	<< (RUT LAS	CRAI CW	TS >> CKING CO			GS >> (8 RIDE (RY	** REMARKS **
6	87090000	18.492	18.764	0.273	3 C	4	1 :	25	27	0	4 98	9				103	0	0.0	0.0	10.0	10	7.5		P/L
6	87090000	18.764	19.317	0.470	C	2	1 1	25	27	0	4 98	3				115	1	0.0	0.0	10.0	9	7.8		
6	87090000	19.317	19.638	0.252	R	2	1 1	. 25	27	0	4 98	3				147	1	0.0	0.0	10.0	9	7.0		
	87090000				i L	2	1 1	25	27	0	4 98	3				205	1	0.0	0.0	10.0	9	6.7		T/L
	87090000				L	2	1 1	25	27	0	4 98	1			L	136	2	0.5	0.0	9.5	8	6.6		RIP.PT
	87090000				L	3	1 1	25	27	0	4.98	3			L	141	1	2.0	0.0	8.0	9	6.8		RIP.DEP.PT
	87090000				L	3	1 1	25	27	0	98				L	118	1	2.0	1.0	7.0	9	6.6		RIP.DEP.PT.M/L
	87090000		10.512		L	3 :	1 1	25	27	04	98					В6	2	0.0	0.0	10.0	8	7.5		M/L
	87090000	20000	9.884		L	3	1 8	25	27															UNDER CONST
_	87090000		5.317	5.269	L	2 :	1 1	25	27	04	98	M	1-	52	5	65	1	0.5	0.0	9.5	9	8.4		RIP.RAV
	87091000	6.632	2.461	2.432	С	2 1	1 1	994		04	98	н	1-	51	i L	164	2	2.0	1.5	6.5	8	6.4	A	R]P.DEP.RAV.PT
	87091000		4.328	1.747	С	2 1	1	994		04	98				L	142	1	2.0	1.0	7.0	9	6.8	C	RIP.SPL.DEL.PT
	87091000		5.000	0.726	c	2 1	1	994		04	98				L	115	0	1.0	1.0	8.0	10	7.8		RIP.PT
83	87091000	10/12/22			R	2 1	7	994		04	98					76	0	0.0	0.0	10.0	10	8.4		NEW PAYT
- 0	87091000	101222		0.237	R	2 1	1	994		04	98				L	126	0	1.0	0.0	9.0	10	7.2		RIP,PT
	87091000	7.086	8.058	0.916	R	2 1	7	994		04	98					93	0	0.0	0.0	10.0	10	7.9		NEW PAVT
	291000	7.086		0.977	L	2 1	5	994		04	98					88	0	0.0	0.0	10.7	10	8.4		NEW CONST
1	11000	6.853								04	98				L	166	0	1.0	0.0	9.0	10	6.2		RIP_PT
6	87091000	5.000		1.820	L	2 1	5	994		04	98					76	0	0.0	0.0	10.0	10	8.4		NEW CONST
WE		0.000	3.893	3.888	С	2 1	1	90	41	05	98				L	127	1	2.0	0.0	8.0	9	6.9	C	RIP.PT
-	87110000	3.893	7.722	3.721	С	2 1	1	90	41	05	98					52	0	0.0	0.0	10.0	10	8.8		
	87110000		8.116		c	2 1	1	90	41	05	98					55	0	0.0	0.0	10.0	10	8.9		
-	87110000							90	41	05	98					50	D	0.0	0.0	10.0	10	8.8		
_	87110000	Approx. 104 - 11 - 14 - 14 - 14	Section 1997					90	41	05	- 98					77	1	3.0	1.0	6.0	9	8.5	C	\supset
	87110000								4]	05	98			23		62	1	0.0	0.0	10.0	9	8.5		50)
.44								90	41	05	98					68	1	0.0	0.0	10.0	9	8.4		

FLORIDA DEPARTMENT OF TRANSPORTATION PRIMARY SYSTEM FLEXIBLE PAVEMENT CONDITION SURVEY -- 1998 SORT BY DISTRICT ROMYIO MILEPOST R ASCENDING L DESCENDING

		BEG[I) NET P. LENGT	H	A	SYST	Y NI		S 0.	МО	YR	RA	WEL	•	P A T	IRI	RUT UL T	CF	ACKI				GS >> RIDE	RY	** REMARKS **
6	8709000	0 14.94	3 15.41	1 0.29	7 F	2	1	1 25	2	7 (04	97				L	166	1	1.	0 0	.5	8.5	9	7.4		RIP.PT.P/L
6	8709000	15.411	17.40	10	C		1	4 25	2	7																RIGID PAVT
6	8709000	37.400	0 18.49	2 0.97	6 0	2	1	1 25	27	7 ()4	97	Н	1-	5%	L	226	2	2.	5 1	.0	6.5	Е	6.4		RIP.RAV.PT.P/L
6	8709000	18.492	2 18.76	4 0.27	2 0	4	1	1 25	27	, (14	97					140	0	0.	0 0	.0	10.0	10	7.B		P/L
6	87090000	18.764	19.27	0 0.499	9 0	2	1	1 25	27	0	14	97					131	1	D.	0 0	.0	10.0	9	7.9		
6	87090000	19.270	19.63	8 0.330	R	2	1	1 25	27	0	4	97					183	1	0.	0 0	0	10.0	9	7.1		
6	87090000	19.270	19.63	8 0.323	L	2	1	1 25	27	0	4	97					205	1	٥.	0 0.	0	10.0	9	6.8		T/L
6	87090000	14.943	15.41	0.313	L	2	1 :	25	27	0	4 !	97				L	205	2	0.	5 0.	0	9.5	8	6.8		RIP.PT
6	87090000	13.022	13.450	0.423	L	3	1 :	25	27	0	4 9	97				L	148	1	0.5	0.	0	9.5	9	7.7		RIP.DEP.PT
6	87090000	10.512	13.022	2 2.561	L	3	1 1	25	27	0.	4 9	97				L	131	1	0.5	1.	0	8.5	9	7.9		RIP.DEP.PT.M/L
6	87090000	5.166	10.512	5.178	L	3	1 1	25	27	04	1 9	97					70	2	0.5	0.	0	9.5	В	8.9		SPL ,M/L
6	87090000	0.000	5.166	5.212	L	2	1 1	25	27	04	9	77 H	1	- 5	1		138	1	0.0	0.	0	10.0	9	7.8		RIP.RAV
6	87091000	0.000	2.461	2.870	C	2	1 1	994		03	9	7 M	1	- 5	3 1	. :	176	2	2.0	1.	0	7.0	8	7.2	A	R1P.DEP.RAV.PT
6	87091000	2.461	4.328	1.700	С	2 :	1 1	994		03	9	7 L	6	- 25	¥ (. :	150	1	2.0	1.	0	7.0	9	7.6	¢	RIP.RAV.DEL.PT
6	87091000	4.328	5.000	0.366	c	2 :	1 1	994		03	9	7			L	. 1	.85	1	0.5	0.	0	9.5	9	7.1		RIP.PT
6	87091000	5.000	6.853		C	2 1	8	994																		UNDER CONST
6	87091000	6.853	7.086	0.235	R.	2 2	1	994		03	9	7			L	. 1	52	0	1.0	0.1)	9.0	10	7.6		RIP.PT
-		7.086			_			994																		UNDER CONST
16	87091000	6.853	7.086	0.220	L	2 1	1	994		03	97	7			L	1	57	0	1.0	0.0)	9.0	10	7.5		RIP.PT
	87110000			3.894					41	03	97	7				1	89	0	0.5	0.0)	9.5	10	7.0	C	RIP
6	87110000	3.893	7.722	3.753	C 2	2 1	7	90	41	03	97	7				1	20	0	0.0	0.0) 1	0.0	0	8.1		NEW PAVT
6	87110000	7.722	8.116	0.575	c 2	2 1	7	90	41	03	97	7				1	01	0	0.0	0.0	1	0.0	10	8.4		NEW PAVT
6	87110000	<u>8</u> .116	13.131	4.758	c 2	1	7	90	41	03	97					1	19	0	0.0	0.0	1	0.0	I.O	8.1		NEW PAYT
6	87110000	13.131 2	24.613	11.200	: 2	1	1	90	41	03	97	_	_		-	1	12	0	2.0	0.0	_	8.0 1	.0	7.7	C	>
61	87110000 .	24.613 2	25.715	1.289	2	1	7	90	41	03	97					1	15	0	0.0	0.0	1	0.0 1	0	8.2		NEW PAVT
	B7120000	0.000	5.035	4.956 F	2	1	1	90	41	03	97					9	95	0	0.0	0.0	1	0.0 1	0	8.5		

Appendix C-2 - Falling Weight Deflectometer Results

August 22, 2000

Mr. Mark Jansen PBS&J 1560 Orange Avenue, Suite 700 Winter Park, Florida 32789 (407) 647-7275 ext. 361 FAX (407) 647-1283

Subject:

FWD Results for U.S. 41, Tamiami Trail - Miami, Florida.

ERES Project No. 0276

Dear Mr. Jansen:

ERES Consultants is pleased to submit the falling weight deflectometer (FWD) testing results for the above referenced project.

We appreciate the opportunity to be of service to PBS&J, and if you have any questions or comments, please do not hesitate to contact us.

Sincerely,

ERES CONSULTANTS

A Division of Applied Research Associates, Inc.

Madeen Com

For Douglas A. Steele, P.E. Senior Engineer Toby L. Crow, P.E. Principal Engineer

RECEIVED
TRANSPORTATION DESIGN

AUG 2'4 2000
PBSJ. NC.-WINTER PARK

M. Jamsen

FILE

Potential Value 2005
Potential Value 2005
Potential Value 2005

Background

As part of a pavement evaluation and design study being performed by PBS&J on the Tamiami Trail, ERES was subcontracted to perform structural evaluation with a falling weight deflectometer (FWD). The project is located in the Everglades just west of Miami and begins at a point 1.35 miles to the east of Structure S334 and extends 12.5 miles west. This portion of the Tamiami Trail consists of two lanes (one lane per direction) of an asphalt concrete (AC) pavement over a crushed limerock base. The natural soil in this area is peat approximately 4-ft in depth overlying limestone bedrock. An embankment layer using a granular material, approximately 2 to 3-ft depth, has been constructed over the entire length of the project.

Pavement layer thickness data were determined through ground-penetrating radar (GPR) survey and pavement coring and boring. The AC layer thicknesses provided by GPR were highly variable, as shown in figure 1. The point-by-point values used in FWD data analysis are included in appendix table A.1. A constant base thickness of 12 in was assumed, based on results of subsurface borings reported by PBS&J.

Figure 1. AC layer thicknesses determination by GPR. U.S. 41, Tamiami Trail – Miami, Florida.

FWD Data Collection

FWD testing using one of ERES' Dynatest Model 8081 falling weight deflectometers (figure 2) was conducted on July 20 and 21, 2000. Testing was performed during the approximate hours of 8:30 am to 2:30 pm, using moving lane closures and flaggers provided by All-American Barricades. Testing was performed in the outer wheel path at 500-ft intervals per lane, with the test points between WB and EB lanes staggered, effectively providing 250-ft spacing along the pavement centerline.

Figure 2. ERES' FWD performing structural evaluation.

Data were collected at target loads of 9, 12, and 16 kips, with sensors placed at distances of 0, 8, 12, 18, 24, 36, and 60 in from the load center. In addition to the load and deflection data, the air and pavement surface temperatures, and time and date stamps were recorded at each test point. Twice each day the pavement mid-depth temperature was measured manually by drilling into the AC layer.

FWD Results

Two types of deflection data analysis were performed—normalization of maximum deflection to load and temperature, and backcalculation of pavement and subgrade layer moduli.

Normalization of Maximum Deflections to Load and Temperature

The largest pavement deflection occurs at the center of the load and is referred to as the maximum deflection, D_0 . Due to changes in pavement stiffness at each test location, the resulting dynamic load varies slightly from its target load. To standardize all maximum deflections to the same load level, a linear extrapolation of the load/deflection relationship is performed. This process is referred to as normalization to load.

In the case of highway pavements, the 18-kip equivalent single axle load (ESAL) is a standard for pavement design, and the maximum deflection for the drop height corresponding to a 9-kip target load (equal to one side of an 18-kip single axle) was normalized to a load of 9,000 lbf. In addition, AC pavement deflections are temperature dependent. The temperature correction method presented in the 1993 AASHTO Guide for Design of Pavement Structures was used to normalize maximum deflections to a temperature of 68°F.

The maximum deflections normalized to 9,000 lbf and 68°F are shown in figure 3. The majority of deflections range from 5 to 15 mils (1 mil = 0.001 in), with an overall mean of approximately 10 mils. Deflections in this range are typical for the pavement structure and subgrade type of this section. It can be seen that the pavement section from approximately 55,000 ft to the end of the project exhibits very low deflections, in spite of having only a thin AC layer, approximately 3 in. Generally, thinner pavement structures result in higher deflections; however, in this case, the lower deflections are due to a very stiff foundation in this area. In general, the difference in D₀ between EB and WB lanes at a given station is due to the combination of differing AC thicknesses and subgrade support.

Figure 3. Maximum deflection normalized to 9,000 lbf and 68°F (D₀). U.S. 41, Tamiami Trail – Miami, Florida

Determination of Pavement Layer Moduli

The FWD data were analyzed using the flexible pavement backcalculation procedure presented in the 1993 AASHTO Guide for Design of Pavement Structures. For flexible pavements, the AASHTO method models the pavement as a two-layer system. One is the combination of all pavement layers above the subgrade (e.g., the asphalt and granular layers), and the other layer is the subgrade. The AASHTO method uses an outer sensor (say, 24 in) for characterization of the subgrade stiffness and the deflection at the center of the load (i.e., the maximum deflection) for determination of the combined stiffness of all layers above the subgrade.

The outputs of this method are the subgrade resilient modulus, M_r , and the composite pavement modulus, E_p . Based on the pavement layer thicknesses and E_p , the effective structural number, SN_{eff} , of the in situ asphalt pavement is determined. Structural number is the concept used in AASHTO for characterization of the structural capacity of the pavement layers. In the AASHTO design model, M_r and SN_{eff} are primary inputs in the determination of the load-carrying capacity of flexible pavements.

Figure 4 shows the M_r values for the WB and EB lanes. The majority of values range from 5,000 to 12,000 psi, with an overall mean of 7,500 psi. M_r results in this range are indicative of fair subgrade support. In this case, the backcalculated M_r values reflect the improvement of the weak peat layer by the granular embankment of variable thickness.

It can be seen that extremely high subgrade resilient moduli were detected from approximately station 56,000 to the end of the project. This significant increase in stiffness can be attributed to either an increase in the thickness and quality of embankment, or a shallow depth to bedrock.

Figure 4. Subgrade resilient modulus (M_r). U.S. 41, Tamiami Trail – Miami, Florida

The backcalculated E_p values are presented in figure 5. The results are highly variable, ranging from approximately 80,000 to 350,000 psi. This variability may be due to variations in the actual base thickness from the assumed constant thickness of 12 in.

Figure 6 presents the SN_{eff} results for the WB and EB lanes. The majority of values range between 3.5 and 6 in, reflecting the high variability in backcalculated E_p values and layer thicknesses. SN_{eff} values in this range are indicative of medium to thick AC pavements. SN_{eff} is highly dependent on the total pavement thickness, and this can be seen in the difference in results between WB and EB lanes, which were reported to have significantly different AC thicknesses at several locations along the project.

The numerical point-by-point FWD results for D₀, M_r, E_p, and SN_{eff} are included in appendix table B.1.

Figure 5. Pavement composite modulus (E_p). U.S. 41, Tamiami Trail – Miami, Florida

Figure 6. Effective structural number (SN_{eff}). U.S. 41, Tamiami Trail – Miami, Florida

APPENDIX A

AC LAYER THICKNESSES FROM GPR USED FOR FWD ANALYSIS

Table A.1. AC Layer Thicknesses from GPR. U.S. 41, Tamiami Trail - Miami, Florida.

		U.S. 41, Tallila	
mission in the second	Station	AC Thickness	
Direction	(ft)	(in)	
Westbound	0	5.1	
Westbound	500	7.4	
Westbound	1,001	3.9	
Westbound	1,500	6.3	
Westbound	2,000	6.9	
Westbound	2,500	7.4	
Westbound	3,000	7.2	
Westbound	3,500	6.0	
Westbound	4,000	6.5	
Westbound	4,500	6.2	
Westbound	5,000	7.7	
Westbound	5,500	5.3	
Westbound	6,000	6.7	
Westbound	6,500	7.5	
Westbound	7,000	7.4	
Westbound	7,500	7.4	
Westbound	8,000	6.5	
Westbound	8,500	7.5	
Westbound	9,000	6.5	
Westbound	9,500	6.9	
Westbound	10,000	7.2	
Westbound	10,500	4.8	
Westbound	11,000	5.7	
Westbound	11,500	5.5	
Westbound	12,000	6.2	
Westbound	12,500	6.9	
Westbound	13,000	6.5	
Westbound	13,500	6.2	
Westbound	14,000	6.5	
Westbound	14,500	6.3	
Westbound	15,000	8.4	
Westbound	15,500	6.0	
Westbound	16,000	6.3	
Westbound	16,500	6.7	
Westbound	17,000	7.2	
Westbound	17,500	6.5	
Westbound	18,000	7.4	
Westbound	18,500	7.2	
Westbound	19,000	6.3	
Westbound	19,500	6.9	
Westbound	20,000	7.4	
Westbound	20,500	6.5	
Westbound	21,000	7.4	
Westbound	21,500	6.5	
	22,000	7.2	
Westbound	22,500	7.4	
Westbound	23,000	6.7	
Westbound	23,500	6.5	
Westbound	24,000	6.9	
Westbound	24,500	7.0	
Westbound		5.8	
Westbound	25,000	6.2	
Westbound	25,500	7.4	
Westbound	26,000		
Westbound	26,500	6.7	
Westbound	27,000	5.3	
Westbound	27,500	6.2	

Direction	Station (ft)	AC Thickness (in)		
Eastbound	0	10.3		
Eastbound	250	7.5		
Eastbound	750	7.7		
Eastbound	1,250	7.0		
Eastbound	1,750	7.0		
Eastbound	2,176	8.4		
Eastbound	2,184	8.4		
Eastbound	2,191	8.2		
Eastbound	2,250	7.2		
Eastbound	2,750	6.7		
Eastbound	3,250	7.0		
Eastbound	3,750	7.5		
Eastbound	4,250	5.0		
Eastbound	4,750	6.5		
Eastbound	5,250	6.5		
Eastbound	5,750	6.7		
Eastbound	6,250	5.5		
Eastbound	6,750	6.9		
Eastbound	7,250	7.7		
Eastbound	7,750	7.5		
Eastbound	8,250	6.7		
Eastbound	8,750	6.2		
Eastbound	9,250	7.4		
Eastbound	9,750	9.6		
Eastbound	10,250	8.7		
Eastbound	10,750	8.7		
Eastbound	11,250	9.6		
Eastbound	11,750	9.3		
Eastbound	12,250	9.4		
Eastbound	12,750	8.7		
Eastbound	13,250	8.1		
Eastbound	13,750	8.6		
Eastbound	14,250	9.8		
Eastbound	14,750	9.3		
Eastbound	15,250	8.9		
Eastbound	15,750	10.3		
Eastbound	16,250	9.3		
Eastbound	16,750	9.8		
Eastbound	17,250	9.8		
Eastbound	17,750	8.9		
Eastbound	18,250	8.6		
Eastbound	18,750	7.9		
Eastbound	19,250	9.4		
Eastbound	19,751	9.4		
Eastbound	20,250	6.9		
Eastbound	20,508	5.5		
Eastbound	20,750	7.4		
Eastbound	21,250	9.8		
Eastbound	21,750	6.5		
Eastbound	22,250	7.2		
Eastbound	22,750	6.5		
Eastbound	23,250	6.5		
Eastbound	23,519	8.2		
Eastbound	23,750	7.0		
Eastbound	24,250	6.2		
Eastbound	24,750	6.7		

Table A.1. AC Layer Thicknesses from GPR. U.S. 41, Tamiami Trail - Miami, Florida.

		0.5. 41, Tanna
1000	Station	AC Thickness
Direction	(ft)	. (in)
Westbound	28,000	4.8
Westbound	28,500	7.5
Westbound	29,000	6.7
Westbound	29,500	7.0
Westbound	30,000	7.0
Westbound	30,500	7.5
Westbound	31,000	8.6
Westbound	31,500	9.1
Westbound	32,000	7.9
Westbound	32,500	8.7
Westbound	33,000	8.7
Westbound	33,500	8.7
Westbound	34,000	6.7
Westbound	34,500	6.0
Westbound	35,000	7.0
Westbound	35,500	6.9
Westbound	36,000	7.2
Westbound	36,500	7.4
Westbound	37,000	8.1
Westbound	37,500	8.6
Westbound	38,000	8.2
Westbound	38,500	8.2
Westbound	39,000	8.4
Westbound	39,500	8.6
Westbound	40,000	8.7
	40,500	8.2
Westbound	41,000	8.2
Westbound Westbound	41,500	9.3
Westbound	42,000	7.7
Westbound	42,500	7.4
Westbound	43,000	8.7
Westbound	43,500	7.9
Westbound	44,000	8.6
Westbound	44,500	7.9
Westbound	45,000	7.4
Westbound	45,500	6.5
	46,000	6.9
Westbound	46,500	7.0
Westbound	47,000	7.4
Westbound	47,500	9.8
Westbound	48,000	7.2
Westbound	48,500	6.3
Westbound	49,000	8.1
Westbound	49,500	7.2
Westbound	50,000	8.1
Westbound	50,500	7.5
Westbound	51,000	6.5
Westbound		9.8
Westbound	51,500	
Westbound	52,000	7.9
Westbound	52,500	6.9
Westbound	53,000	7.2
Westbound	53,500	6.7
Westbound	54,000	8.1
Westbound	54,500	7.7
Westbound	55,000	8.4
Westbound	55,500	7.7

Direction	Station (ft)	AC Thicknes
Eastbound	25,249	6.0
Eastbound	25,750	7.7
Eastbound	26,250	6.7
Eastbound	26,417	4.8
Eastbound	26,426	5.1
Eastbound	26,750	6.7
		5.8
Eastbound	27,250	
Eastbound	27,748	5.8
Eastbound	28,250	6.5
Eastbound	28,750	5.5
Eastbound	29,250	5.7
Eastbound	29,750	5.1
Eastbound	30,250	4.8
Eastbound	30,750	3.3
Eastbound	31,250	4.6
Eastbound	31,728	5.7
Eastbound	31,750	5.5
Eastbound	32,250	3.6
	32,750	4.5
Eastbound	33,250	5.3
Eastbound		
Eastbound	33,750	3.9
Eastbound	34,249	5.0
Eastbound	34,750	4.1
Eastbound	35,250	4.6
Eastbound	35,296	6.5
Eastbound	35,750	3.1
Eastbound	36,250	5.0
Eastbound	36,750	3.4
Eastbound	37,250	3.6
Eastbound	37,750	6.2
Eastbound	37,886	5.7
Eastbound	38,248	5.7
Eastbound	38,750	4.3
	39,250	5.1
Eastbound		5.3
Eastbound	39,750	
Eastbound	40,250	3.3
Eastbound	40,750	3.9
Eastbound	41,250	5.1
Eastbound	41,555	7.9
Eastbound	41,750	6.2
Eastbound	42,250	5.5
Eastbound	42,750	3.6
Eastbound	43,250	3.9
Eastbound	43,750	3.9
Eastbound	44,144	5.8
	44,250	7.7
Eastbound		
Eastbound	44,750	3.4
Eastbound	45,250	6.9
Eastbound	45,750	3.4
Eastbound	46,250	4.3
Eastbound	46,750	6.0
Eastbound	47,191	4.8
Eastbound	47,250	4.3
Eastbound	47,750	5.5
Eastbound	48,250	6.7
Lastodalla	10,200	4.3

Table A.1. AC Layer Thicknesses from GPR. U.S. 41, Tamiami Trail - Miami, Florida.

Direction	Station (ft)	AC Thickness (in)	Direction	Station (ft)	AC Thickness (in)
Westbound	56,000	7.7	Eastbound	49,250	3.4
Westbound	56,500	2.9	Eastbound	49,750	4.8
Westbound	57,000	3.1	Eastbound	50,250	6.0
Westbound	57,500	3.1	Eastbound	50,750	6.3
Westbound	57,523	3.1	Eastbound	51,245	7.0
Trestorene			Eastbound	51,750	5.1
			Eastbound	52,250	7.4
			Eastbound	52,750	7.2
			Eastbound	53,250	6.3
			Eastbound	53,750	6.2
		S. Derbert State	Eastbound	54,250	5.5
-			Eastbound	54,750	4.3
			Eastbound	55,250	5.0
			Eastbound	55,750	5.7
			Eastbound	56,250	3.8
			Eastbound	56,750	2.7
			Eastbound	57,250	2.7
			Eastbound	57,500	3.3

APPENDIX B FWD RESULTS

Table B.1. FWD Results U.S. 41, Tamiami Trail - Miami, Florida.

General			Results			
Section No	Station (ft)	Lane Nº	D0n (mils)	Mr (psi)	Ep (psi)	SNeff (in)
Lane I (WB) Average:			11.1	6,176.7	121,844.6	4.1
Lane I (WB) STD:			2.5	3,946.0	47,100.6	0.6
Lane 2 (EB) Avera	ge:		10.0	7,473.5	147,101.3	4.3
Lane 2 (EB) STD:			2.6	3,979.3	60,016.4	0.8

GPR Core information (Thickness)		
WB Lane Average:		7.03
WB Lane STD:		1.26
EB Lane Average:	114.4	6.32
EB Lane STD:		1.89

Table B.1. FWD Results U.S. 41, Tamiami Trail - Miami, Florida.

3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	General		TA.	Mr	Ep	SNeff
Section	Station	Lane	D0n	15 HE CO. 1	0.000000	(in)
No	(ft)	N°	(mils)	(psi)	(psi)	
1	0	1	13.11	4,359	119,339	3.8
1	500	1	12.22	5,029	108,297	4.2
1	1001	. 1	13.69	4,310	119,737	3.5
1	1500	1	11.36	5,113	127,530	4.1
	2000	1	11.33	4,547	136,712	4.4
1	2500	1	11.06	4,192	148,987	4.6
1		1	10.47	6,936	114,079	4.2
1	3000		11.65	5,865	111,624	3.9
1	3500	1	11.82	5,184	116,511	4.1
1	4000	1	10.19	4,606	171,499	4.6
1	4500				94,142	4.0
1	5000	1	14.23	4,173	91,046	3.5
1	5500	t	13.43	5,783		3.9
1	6000	1	12.41	5,395	103,247	
1	6500	1	10.85	5,131	130,552	4.5
1	7000	1	10.74	6,001	119,300	4.3
1	7500	1	12.59	5,690	94,980	4.0
	8000	1	11.28	5,652	118,498	4.1
1	8500	1	11.29	6,704	102,165	4.1
1	9000	1	13.33	4,556	104,068	3.9
1	9500	1	11.63	6,512	100,871	4.0
1		i	13.82	4,584	94,507	3.9
1	10000	1	13.83	5,708	89,206	3.4
1	10500		15.85	4,244	84,058	3.5
1	11000	1		5,375	103,977	3.7
1	11500	1	12.76	5,744	100,731	3.8
1	12000	1	12.43	5,052	94,284	3.9
1	12500	1	13.39		93,462	3.8
1	13000	1	12.59	6,123		3.8
1	13500	1	12.38	5,737	101,425	4.1
1	14000	1	10.11	7,380	118,872	3.9
1	14500	1	14.87	3,379	109,969	
1	15000	1	6.95	7,967	197,298	5.3
1	15500	1	11.68	6,112	107,949	3.9
1	16000	1	14.64	4,984	84,007	3.6
1	16500	1	9.76	7,322	125,580	4.2
1	17000	1	8.98	8,373	130,192	4.4
1	17500	1	10.14	7,799	114,403	4.0
	18000	1	10.65	7,045	109,156	4.2
1	18500	1	7.30	9,411	169,623	4.8
1	19000	1	11.29	6,858	104,596	3.9
1		i	8.81	7,583	144,507	4.5
1	19500	i	10.42	6,688	116,816	4.3
1	20000		8.83	7,544	146,824	4.4
1	20500	1	7.63	8,342	169,493	4.8
1	21000	1		6,539	112,463	4.0
1	21500	1	10.97	8,247	128,194	4.4
1	22000	1	9.12		189,394	5.0
1	22500	1	7.22	8,129		4.3
1	23000	1	10.22	6,072	132,404	
1	23500	1	10.19	7,318	117,985	4.1
i	24000	1	11.14	6,213	111,683	4.1
1	24500	1	9.29	6,628	144,634	4.5
	25000	1	11.67	5,942	111,168	3.9
1	25500	1	10.88	7,014	109,930	3.9
1	26000	1	9.81	6,779	127,871	4.4
1		1	10.40	6,261	125,521	4.2
1	26500		13.24	4,906	105,305	3.7
1	27000	1		5,908	99,383	3.8
1	27500	1	12.38	3,900	261,793	4.8

Table B.1. FWD Results U.S. 41, Tamiami Trail - Miami, Florida.

	General	lane	D0n	Mr	Ep	SNeff
Section	Station	Lane	A 2000 State 10	(psi)	(psi)	(in)
No	(ft)	Nº	(mils)	7,393	138,530	4.5
1	28500	1	9.01		135,445	4.3
1	29000	1	9.15	7,690		4.3
1	29500	1	9.58	7,265	129,018	4.0
1	30000	1	11.86	5,700	106,161	4.4
1	30500	1	9.94	6,901	123,367	
2	31000	1	8.73	7,104	144,356	4.9
2	31500	1	6.97	8,842	178,527	5.3
2	32000	1	8.97	9,010	122,490	4.4
2	32500	1	4.98	9,874	296,450	6.2
2	33000		7.35	7,733	181,067	5.3
2	33500	t	7.16	8,780	174,010	5.2
2	34000	1 .	10.95	7,530	102,566	3.9
2	34500	1	10.90	6,953	111,098	3.9
	35000	1	9.19	7,148	139,832	4.4
2	35500	1	10.58	6,846	114,243	4.1
2	36000	1	9.66	7,310	125,780	4.3
2	36500	1	7.95	7,789	165,683	4.8
2	37000	-i	8.73	6,432	157,372	4.9
2	37500	i	10.08	6,168	124,960	4.6
2	38000	i	5.64	6,386	352,191	6.4
2	38500	1	5.34	11,248	244,579	5.7
2	39000	1	7.59	9,870	148,659	4.9
2	39500	1	7.17	8,876	172,808	5.2
2		1	5.68	11,172	217,626	5.6
2	40000	1	5.54	12,556	214,494	5.4
2	40500	1	6.25	9,178	215,659	5.5
2	41000	1	7.93	8,470	147,989	5.1
2	41500		9.30	8,124	123,219	4.4
2	42000	1	9.28	8,746	119,560	4.3
2	42500	1	5.75	9,928	230,776	5.7
2	43000	1	9.24	8,277	122,509	4.4
2	43500		5.50	11,640	224,457	5.6
2	44000	1	8.21	8,083	150,432	4.8
2	44500	1	11.31	5,961	109,987	4.2
2	45000	1	10.04	7,615	117,756	4.1
2	45500	1	7.46	9,112	168,840	4.7
2	46000	1	9.60	8,462	116,809	4.2
2	46500	1	8.72	7,023	152,226	4.7
2	47000	1		7,505	211,615	5.8
2	47500	1	6.62 7.95	7,251	176,098	4.8
2	48000	1	11.20	6,055	115,139	4.0
2	48500	1	8.74	7,645	139,705	4.7
2	49000	1		6,745	121,162	4.3
2	49500	1	10.20	6,561	127,774	4.6
2	50000	1	9.79	7,682	156,629	4.7
2	50500	1	8.25	7,736	108,014	4.0
2	51000	1	10.52		198,716	5.7
2	51500	1	6.23	9,608	180,707	5.1
2	52000	1	7.77	7,080		4.4
2	52500	1	9.52	6,398	142,894	4.7
2	53000	t	8.59	7,005	157,614	4.7
2	53500	1	9.96	6,698	129,055	
2	54000	1	7.03	7,333	208,415	5.4
2	54500	1	8.45	8,765	137,467	4.6
2	55000	1	6.85	8,697	189,948	5.3
2	55500	1	4.95	13,062	255,148	5.6
2	56000	1	5.65	10,698	233,936	5.5
2	56500	1	9.17	9,108	140,999	3.5

Table B.1. FWD Results U.S. 41, Tamiami Trail - Miami, Florida.

General		Results Dun Mr Ep				
Section	Station	Lane	D0n	F 95787833		SNeff (in)
Nº	(ft)	No	(mils)	(psi)	(psi)	3.8
	57000	1	4.52	40,040	179,435	
3	57500	1	5.39	19,233	203,443	4.0
	57523	1	4.74	22,772	225,107	4.1
3	0	2	6.93	5,205	254,415	6.4
4	250	2	11.56	3,825	147,975	4.6
4	750	2	8.95	4,367	211,592	5.3
4		2	10.89	4,471	148,450	4.5
4	1250	2	10.59	3,866	178,651	4.8
4	1750	2	5.68	11,047	221,752	5.6
4	2176	2	5.72	9,811	237,303	5.7
4	2184	2	5.89	10,201	221,262	5.5
4	2191	2	9.13	4,780	192,571	5.0
4	2250		6.78	8,014	221,038	5.1
4	2750	2	9.77	4,848	169,357	4.7
4	3250	2	10.70	5,512	126,842	4.4
4	3750	2		5,368	135,409	3.9
4	4250	2	11.16	8,820	160,478	4.5
4	4750	2	7.86	6,300	129,292	4.2
4	5250	2	10.25	6,798	147,839	4.4
4	5750	2	9.14		124,499	3.9
4	6250	2	11.40	5,492	131,453	4.3
4	6750	2	9.58	7,090	130,847	4.5
4	7250	2	9.97	6,195	124,410	4.4
4	7750	2	10.31	6,213		4.4
4	8250	2	10.51	4,996	146,646 128,134	4.1
4	8750	2	11.90	4,610		4.4
4	9250	2	10.54	5,552	130,218	5.3
5	9750	2	8.20	6,351	166,622	5.1
5	10250	2	10.47	3,891	164,648	4.9
5	10750	2	9.14	6,077	147,954	5.2
5	11250	2	9.29	5,392	151,211	5.1
5	11750	2	9.25	5,378	154,559	5.1
5	12250	2	8.59	7,032	145,186	
5	12750	2	8.19	5,615	190,186	5.4
	13250	2	9.61	5,806	143,416	4.7
5	13750	2	10.01	5,647	133,882	4.7
5	14250	2	11.22	4,770	118,825	4.8
5	14750	2	5.63	6,908	309,014	6.5
5	15250	2	7.41	7,066	188,991	5.4
5	15750	2	8.47	5,667	166,603	5.5
5	16250	2	11.06	3,914	143,731	5.0
5	16750	2	8.33	4,397	214,290	5.9
5	17250	2	7.91	6,146	180,188	5.5
5		2	9.88	6,430	124,508	4.7
5	17750	2	5.40	6,629	361,385	6.6
5	18250	2	13.33	5,540	86,674	4.0
5	18750		5.10	7,478	345,071	6.8
5	19250	2	5.56	8,109	275,881	6.3
5	19751	2	11.23	6,166	110,837	4.1
6	20250	2	6.30	13,958	177,894	4.4
6	20508	2		6,593	101,683	4.1
6	20750	2	11.41	7,404	192,708	5.7
6	21250	2	7.04	6,424	110,892	4.0
6	21750	2	11.14	5,003	109,420	4.1
6	22250	2	12.24		107,369	4.0
6	22750	2	12.24	5,357	116,629	4.1
	23250	2	12.73	4,375	215,304	5.4
6		2	5.27	14,223	213,304	1 3.4

Table B.1. FWD Results U.S. 41, Tamiami Trail - Miami, Florida.

	General		W.A.	Res	Ep	SNeff
Section	Station	Lane	D0n	Mr	0 000000	
Nº	(ft)	- Nº	(mils)	(psi)	(psi)	(in)
6	24250	2	12.53	5,328	104,600	3.9
6	24750	2	10.72	6,386	117,900	4.1
6	25249	2	10.36	6,957	120,834	4.0
6	25750	2	9.59	7,462	123,653	4.4
6	26250	2	11.18	5,193	127,118	4.2
6	26417	2	5.90	15,682	187,774	4.3
6	26426	2	5.93	12,967	209,154	4.6
	26750	2	13.41	4,979	95,634	3.8
6	27250	2	13.91	4,782	96,043	3.7
6	27748	2	11.50	6,550	106,518	3.8
6	28250	2	10.69	6,578	116,963	4.1
6	28750	2	9.54	6,660	147,263	4.2
6		2	9.96	7,185	128,240	4.0
6	29250		13.42	6,091	88,691	3.4
7	29750	2	9.32	7,030	152,227	4.0
7	30250	2		5,631	87,181	3.1
7	30750	2	14.65	7,910	139,026	3.9
7	31250	2	9.36	6,404	172,521	4.4
7	31728	2	8.84	8,713	136,863	4.1
7	31750	2	8.89		130,751	3.6
7	32250	2	10.35	7,260	117,290	3.6
7	32750	2	10.77	7,230		4.0
7	33250	2	10.15	6,767	131,646	
7	33750	2	12.03	6,267	110,487	3.4
7	34249	2	11.05	6,052	125,012	3.8
7	34750	2	11.33	6,921	112,918	3.5
7	35250	2	10.37	6,872	129,445	3.8
7	35296	2	5.31	13,246	234,991	5.1
7	35750	2	13.89	5,552	98,061	3.1
7	36250	2	13.22	5,958	92,883	3.5
7	36750	2	13.97	5,815	92,071	3.1
7	37250	2	10.77	6,815	128,156	3.5
	37750	2	9.34	8,022	129,722	4.1
7	37886	2	5.62	15,074	202,878	4.7
7	38248	2	11.61	7,225	98,757	3.7
7	38750	2	10.71	7,478	116,469	3.6
7	39250	2	10.90	7,475	109,404	3.7
7	39750	2	10.65	7,429	113,355	3.8
7		2	12.58	6,779	99,031	3.2
7	40250	2	10.10	7,544	130,844	3.6
7	40750		10.95	6,440	120,727	3.8
7	41250	2	3.91	9,701	491,589	7.1
7	41555	2		5,711	97,592	3.8
7	41750	2	12.69	6,677	109,563	3.8
7	42250	2	11.30		104,365	3.3
7	42750	2	12.09	6,810	113,128	3.5
7	43250	2	12.03	6,084		3.3
7	43750	2	11.96	7,609	96,931	4.5
7	44144	2	7.10	9,848	181,808	
7	44250	2	9.15	7,990	127,951	4.5
7	44750	2	12.28	5,893	115,023	3.4
7	45250	2	9.76	7,554	122,323	4.2
7	45750	2	11.00	6,968	122,569	3.4
7	46250	2	12.31	6,475	101,708	3.4
	46750	2	13.23	5,778	91,052	3.6
7	47191	2	7.76	8,964	174,664	4.2
7	47250	2	12.92	5,909	100,091	3.4
7		2	14.60	5,119	85,257	3.5
7	47750 48250	2	13.70	4,446	100,267	3.9

Table B.1. FWD Results U.S. 41, Tamiami Trail - Miami, Florida.

	General			Res	ults	
Section	Station (ft)	Lane N°	D0n (mils)	Mr (psi)	Ep (psi)	SNeff (in)
No	48750	2	12.18	5,908	110,914	3.5
7		2	17.17	4,242	81,760	3.0
7	49250	2	12.22	6,000	106,520	3.6
7	49750		14.50	5,482	80,977	3.5
7	50250	2	12.63	5,265	103,702	3.9
7	50750	2	11.10	6,001	114,544	4.2
7	51245	2		7,606	95,554	3.5
7	51750	2	11.76	6,533	118,539	4.3
7	52250	2	10.42		138,221	4.5
7	52750	2	8.72	8,178	134,179	4.2
. 7	53250	2	9.50	7,274		4.1
7	53750	2	10.45	6,622	122,240	
7	54250	2	8.53	9,800	135,445	4.0
7	54750	2	8.78	8,639	147,786	3.9
7	55250	2	4.22	20,159	275,709	5.0
	55750	2	8.21	10,961	133,661	4.1
7	56250	2	6.50	16,330	162,209	3.9
8	56750	2	5.24	32,337	160,192	3.6
8		2	6.91	20,689	132,324	3.4
8	57250		4.01	26,517	266,673	4.4
8	57500	2	7.01	2-10-1		

Section N Job Stati Lan	e N° D0n (mils) Mr (psi)	Ep (psi)	SNeff (in)
10th Percentile	12.99	9,871	214,818	5.4
90th Percentile	5.83	4,883	98,922	3.5
95th Percentile	5.39	4,381	93,056	3,4
Average	9.82	7,556	145,367	4.4
STD	2.54	3,957	54,206	0.7
Max	17.17	40,040	491,589	7.1
Min	3.91	3,379	80,977	3.0
Average + 2 STD	14.89	15,469	253,779	5.8
Average - 2 STD	4.75	-357	36,955	2.9
Average + 1 STD	12.36	11,513	199,573	5.1
Average - 1 STD	7.28	3,600	91,161	3.6

n s n a l:

T E a o p

F 1 si g

It 5 it

ection N	Job Stati	Lane N°	D0n (mils)	Mr (psi)	Ep (psi)	SNeff (in)
3	729+50	t (WB)	4.74	22,772	225,107	4.1
3	729+73	I (WB)	5.39	19,233	203,443	4.0
3	734+73	L(WB)	4.52	40,040	179,435	3.8
2	739+73	1 (WB)	9.17	9,108	140,999	3.5
2	744+73	1 (WB)	5.65	10,698	233,936	5.5
2	751+00	1 (WB)	4.95	13,062	255,148	5.6
2	756+00	1 (WB)	6.85	8,697	189,948	5.3
2	761+00	1 (WB)	8.45	8,765	137,467	4.6
2	766+00	1 (WB)	7.03	7,333	208,415	5.4
2	771+00	1 (WB)	9.96	6,698	129,055	4.3
2	776+00	1 (WB)	8.59	7,005	157,614	4.7
2	781+00	1 (WB)	9.52	6,398	142,894	4,4
2	786+00	1 (WB)	7.77	7,080	180,707	5.1
2	791+00	1 (WB)	6.23	9,608	198,716	5.7
2	796+00	1 (WB)	10.52	7,736	108,014	4.0
2	801+00	1 (WB)	8.25	7,682	156,629	4.7
2	806+00	1 (WB)	9.79	6,561	127,774	4.6
2	811+00	1 (WB)	10.20	6,745	121,162	4.3
2	816+00	1 (WB)	8.74	7,645	139,705	4.7
2	821+00	1 (WB)	11.20	6,055	115,139	4,0
2	826+00	1 (WB)	7.95	7,251	176,098	4.8
2	831+00	t (WB)	6.62	7,505	211,615	5.8
2	836+00	t (WB)	8.72	7,023	152,226	4.7
2	841+00	L(WB)	9.60	8,462	116,809	4.2
2	846+00	I (WB)	7.46	9,112	168,840	4.7
2	851+00	1 (WB)	10.04	7,615	117,756	4.1
2	856+00	1 (WB)	11.31	5,961	109,987	4.2
2	861+00	1 (WB)	8.21	8,083	150,432	4.8
2	866+00	1 (WB)	5.50	11,640	224,457	5.6
2	871+00	1 (WB)	9.24	8,277	122,509	4.4
2	876+00	1 (WB)	5.75	9,928	230,776	5.7
2	881+00	1 (WB)	9.28	8,746	119,560	4.3
2	886+00	1 (WB)	9.30	8,124	123,219	4.4
2	891+00	1 (WB)	7.93	8,470	147,989	5.1
2	896+00	1 (WB)	6.25	9,178	215,659	5.5
2	901+00	1 (WB)	5.54	12,556	214,494	5.4
2	906+00	1 (WB)	5.68	11,172	217,626	5.6
2	911+00	L(WB)	7.17	8,876	172,808	5.2
2	916+00	I (WB)	7.59	9,870	148,659	4.9
2	921+00	I (WB)	5.34	11,248	244,579	5.7
2	926+00	1 (WB)	5.64	6,386	352,191	6.4
2	931+00	1 (WB)	10.08	6,168	124,960	4.6
2	936+00	1 (WB)	8.73	6,432	157,372	4.9
2	941+00	1 (WB)	7.95	7,789	165,683	4.8
2	946+00	1 (WB)	9.66	7,310	125,780	4.3
2	951+00	1 (WB)	10.58	6,846	114,243	4.1
2	956+00	1 (WB)	9.19	7,148	139,832	4.4
2	961+00	1 (WB)	10.90	6,953	111,098	3.9

ection N	Job Stati	Lane N°	D0n (mils)	Mr (psi)	Ep (psi)	SNeff (in)
2	966+00	1 (WB)	10.95	7,530	102,566	3.9
2	971+00	1 (WB)	7.16	8,780	174,010	5.2
2	976+00	1 (WB)	7.35	7,733	181,067	5.3
2	981+00	1 (WB)	4.98	9,874	296,450	6.2
2	986+00	L(WB)	8.97	9,010	122,490	4.4
2	991+00	1 (WB)	6.97	8,842	178,527	5.3
2	996+00	1 (WB)	8.73	7,104	144,356	4.9
1	1001+00	1 (WB)	9.94	6,901	123,367	4.4
1	1006+00	1 (WB)	11.86	5,700	106,161	4.0
1	1011+00	1 (WB)	9.58	7,265	129,018	4.3
1	1016+00	1 (WB)	9.15	7,690	135,445	4.3
1	1021+00	1 (WB)	9.01	7,393	138,530	4.5
1	1026+00	1 (WB)	7.04	6,958	261,793	4.8
1	1031+00	1 (WB)	12.38	5,908	99,383	3.8
1	1036+00	t (WB)	13.24	4,906	105,305	3.7
1	1041+00	L(WB)	10.40	6,261	125,521	4.2
1	1046+00	1 (WB)	9.81	6,779	127,871	4,4
1	1051+00	t (WB)	10.88	7,014	109,930	3.9
1	1056+00	I (WB)	11.67	5,942	111,168	3.9
1	1061+00	1 (WB)	9.29	6,628	144,634	4.5
1	1066+00	1 (WB)	11.14	6,213	111,683	4.1
1	1071+00	1 (WB)	10.19	7,318	117,985	4.1
1	1076+00	1 (WB)	10.22	6,072	132,404	4.3
1	1081+00	1 (WB)	7.22	8,129	189,394	5.0
1	1086+00	1 (WB)	9.12	8,247	128,194	4.4
1	1091+00	1 (WB)	10.97	6,539	112,463	4.0
1	1096+00	1 (WB)	7.63	8,342	169,493	4.8
1	1101+00	1 (WB)	8.83	7,544	146,824	4.4
1	1106+00	1 (WB)	10.42	6,688	116,816	4.3
1	1111+00	1 (WB)	8.81	7,583	144,507	4.5
i	1116+00	1 (WB)	11.29	6,858	104,596	3.9
1	1121+00	1 (WB)	7.30	9,411	169,623	4.8
1	1126+00	1 (WB)	10.65	7,045	109,156	4.2
i	1131+00	1 (WB)	10.14	7,799	114,403	4.0
1	1136+00	1 (WB)	8.98	8,373	130,192	4.4
1	1141+00	1 (WB)	9.76	7,322	125,580	4.2
1	1146+00	1 (WB)	14.64	4,984	84,007	3.6
1	1151+00	1 (WB)	11.68	6,112	107,949	3.9
1	1156+00	1 (WB)	6.95	7,967	197,298	5.3
1	1161+00	1 (WB)	14.87	3,379	109,969	3.9
1	1166+00	1 (WB)	10.11	7,380	118,872	4.1
1	1171+00	I (WB)	12.38	5,737	101,425	3.8
1	1176+00	I (WB)	12.59	6,123	93,462	3.8
1	1181+00	I (WB)	13.39	5,052	94,284	3.9
			12.43	5,744	100,731	3.8
1	1186+00	1 (WB)	12.45	5,375	103,977	3.7
1	1191+00	1 (WB)		4,244	84,058	3.5
1	1196+00 1201+00	1 (WB)	15.85	5,708	89,206	3.4

ection IN	Job Stati	Lanein	D0n (mils)		Ep (psi)	SNeff (in)
1	1206+00	1 (WB)	13.82	4,584	94,507	3.9
1	1211+00	1 (WB)	11.63	6,512	100,871	4.0
1	1216+00	1 (WB)	13.33	4,556	104,068	3.9
- 1	1221+00	1 (WB)	11.29	6,704	102,165	4.1
1	1226+00	1 (WB)	11.28	5,652	118,498	4.1
- 1	1231+00	1 (WB)	12.59	5,690	94,980	4.0
1	1236+00	1 (WB)	10.74	6,001	119,300	4.3
1	1241+00	1 (WB)	10.85	5,131	130,552	4.5
1_	1246+00	1 (WB)	12.41	5,395	103,247	3.9
1	1251+00	1 (WB)	13.43	5,783	91,046	3.5
t	1256+00	1 (WB)	14.23	4,173	94,142	4.0
ı	1261+00	1 (WB)	10.19	4,606	171,499	4.6
1	1266+00	1 (WB)	11.82	5,184	116,511	4.1
1	1271+00	1 (WB)	11.65	5,865	111,624	3.9
1	1276+00	1 (WB)	10.47	6,936	114,079	4.2
1	1281+00	1 (WB)	11.06	4,192	148,987	4.6
1	1286+00	1 (WB)	11.33	4,547	136,712	4.4
1	1291+00	1 (WB)	11.36	5,113	127,530	4.1
1	1295+99	L(WB)	13.69	4,310	119,737	3.5
1	1301+00	1 (WB)	12.22	5,029	108,297	4.2
1	1306+00	I (WB)	13.11	4,359	119,339	3.8
8	729+73	2 (EB)	4.01	26,517	266,673	4.4
8	732+23	2 (EB)	6.91	20,689	132,324	3.4
8	737+23	2 (EB)	5.24	32,337	160,192	3.6
8	742+23	2 (EB)	6.50	16,330	162,209	3.9
7	748+50	2 (EB)	8.21	10,961	133,661	4.1
7	753+50	2 (EB)	4.22	20,159	275,709	5.0
7	758+50	2 (EB)	8.78	8,639	147,786	3.9
7	763+50	2 (EB)	8.53	9,800	135,445	4.0
7	768+50	2 (EB)	10.45	6,622	122,240	4.1
7	773+50	2 (EB)	9.50	7,274	134,179	4.2
7	778+50	2 (EB)	8.72	8,178	138,221	4.5
7	783+50	2 (EB)	10.42	6,533	118,539	4.3
7	788+50	2 (EB)	11.76	7,606	95,554	3.5
7	793+55	2 (EB)	11.10	6,001	114,544	4.2
7	798+50	2 (EB)	12.63	5,265	103,702	3.9
7	803+50	2 (EB)	14.50	5,482	80,977	3.5
7	808+50	2 (EB)	12.22	6,000	106,520	3.6
7	813+50	2 (EB)	17.17	4,242	81,760	3.0
7	818+50	2 (EB)	12.18	5,908	110,914	3.5
7	823+50	2 (EB)	13.70	4,446	100,267	3.9
7	828+50	2 (EB)	14.60	5,119	85,257	3.5
	833+50	2 (EB)	12.92	5,909	100,091	3.4
7		2 (EB)	7.76	8,964	174,664	4.2
7	834+09		13.23	5,778	91,052	3.6
7	838+50	2 (EB)	12.31	6,475	101,708	3.4
7	843+50 848+50	2 (EB) 2 (EB)	11.00	6,968	122,569	3.4

	Job Stati		D0n (mils)		Ep (psi)	SNeff (in
7	853+50	2 (EB)	9.76	7,554	122,323	4.2
7	858+50	2 (EB)	12.28	5,893	115,023	3.4
7	863+50	2 (EB)	9.15	7,990	127,951	4.5
7	864+56	2 (EB)	7.10	9,848	181,808	4.5
7	868+50	2 (EB)	11.96	7,609	96,931	3.3
7	873+50	2 (EB)	12.03	6,084	113,128	3.5
7	878+50	2 (EB)	12.09	6,810	104,365	3.3
7	883+50	2 (EB)	11.30	6,677	109,563	3.8
7	- 888+50	- 2 (EB) -	12.69	5,711	.97,592	3.8
7	890+45	2 (EB)	3.91	9,701	491,589	7.1
7	893+50	2 (EB)	10.95	6,440	120,727	3.8
7	898+50	2 (EB)	10.10	7,544	130,844	3.6
7	903+50	2 (EB)	12.58	6,779	99,031	3.2
7	908+50	2 (EB)	10.65	7,429	113,355	3.8
7	913+50	2 (EB)	10.90	7,475	109,404	3.7
7	918+50	2 (EB)	10.71	7,478	116,469	3.6
7	923+52	2 (EB)	11.61	7,225	98,757	3.7
7	927+14	2 (EB)	5.62	15,074	202,878	4.7
7	928+50	2 (EB)	9.34	8,022	129,722	4.1
7	933+50	2 (EB)	10.77	6,815	128,156	3.5
7	938+50	2 (EB)	13.97	5,815	92,071	3.1
7	943+50	2 (EB)	13.22	5,958	92,883	3.5
7	948+50	2 (EB)	13.89	5,552	98,061	3.1
7	953+04	2 (EB)	5.31	13,246	234,991	5.1
7	953+50	2 (EB)	10.37	6,872	129,445	3.8
7	958+50	2 (EB)	11.33	6,921	112,918	3.5
7	963+51	2 (EB)	11.05	6,052	125,012	3.8
7	968+50	2 (EB)	12.03	6,267	110,487	3.4
7	973+50	2 (EB)	10.15	6,767	131,646	4.0
7	978+50	2 (EB)	10.77	7,230	117,290	3.6
7	983+50	2 (EB)	10.35	7,260	130,751	3.6
7	988+50	2 (EB)	8.89	8,713	136,863	4.1
7	988+72	2 (EB)	8.84	6,404	172,521	4.4
7	993+50	2 (EB)	9.36	7,910	139,026	3.9
7	998+50	2 (EB)	14.65	5,631	87,181	3.1
7	1003+50	2 (EB)	9.32	7,030	152,227	4.0
7	1008+50	2 (EB)	13.42	6,091	88,691	3.4
6	1013+50	2 (EB)	9.96	7,185	128,240	4.0
6	1018+50	2 (EB)	9.54	6,660	147,263	4.2
6	1023+50	2 (EB)	10.69	6,578	116,963	4.1
6	1028+52	2 (EB)	11.50	6,550	106,518	3.8
6	1033+50	2 (EB)	13.91	4,782	96,043	3.7
6	1038+50	2 (EB)	13.41	4,979	95,634	3.8
6	1041+74	2 (EB)	5.93	12,967	209,154	4.6
6	1041+74	2 (EB)	5.90	15,682	187,774	4.3
		-	11.18	5,193	127,118	4.2
6	1043+50	2 (EB)	9.59	7,462	123,653	4.4
6	1048+50 1053+51	2 (EB) 2 (EB)	10.36	6,957	120,834	4.0

I I n s n a l:

T E a o p

F I si g

It 5

ection N	Job Stati	Lane N°	D0n (mils)	Mr (psi)	Ep (psi)	SNeff (in)
6	1058+50	2 (EB)	10.72	6,386	117,900	4.1
6	1063+50	2 (EB)	12.53	5,328	104,600	3.9
6	1068+50	2 (EB)	11.86	5,635	107,040	4.1
6	1070+81	2 (EB)	5.27	14,223	215,304	5.4
6	1073+50	2 (EB)	12.73	4,375	116,629	4.1
6	1078+50	2 (EB)	12.24	5,357	107,369	4.0
6	1083+50	2 (EB)	12.24	5,003	109,420	4.1
6	1088+50	2 (EB)	11.14	6,424	110,892	4.0
6	1093+50	2 (EB)	7.04	7,404	192,708	5.7
6	1098+50	2 (EB)	11.41	6,593	101,683	4.1
6	1100+92	2 (EB)	6.30	13,958	177,894	4.4
6	1103+50	2 (EB)	11.23	6,166	110,837	4.1
5	1108+49	2 (EB)	5.56	8,109	275,881	6.3
5	1113+50	2 (EB)	5.10	7,478	345,071	6.8
5	1118+50	2 (EB)	13.33	5,540	86,674	4.0
5	1123+50	2 (EB)	5.40	6,629	361,385	6.6
5	1128+50	2 (EB)	9.88	6,430	124,508	4.7
5	1133+50	2 (EB)	7.91	6,146	180,188	5.5
5	1138+50	2 (EB)	8.33	4,397	214,290	5.9
5	1143+50	2 (EB)	11.06	3,914	143,731	5.0
5	1148+50	2 (EB)	8.47	5,667	166,603	5.5
5	1153+50	2 (EB)	7.41	7,066	188,991	5.4
5	1158+50	2 (EB)	5.63	6,908	309,014	6.5
5	1163+50	2 (EB)	11.22	4,770	118,825	4.8
5	1168+50	2 (EB)	10.01	5,647	133,882	4.7
5	1173+50	2 (EB)	9.61	5,806	143,416	4.7
5	1178+50	2 (EB)	8.19	5,615	190,186	5.4
5	1183+50	2 (EB)	8.59	7,032	145,186	5.1
5	1188+50	2 (EB)	9.25	5,378	154,559	5.1
5	1193+50	2 (EB)	9.29	5,392	151,211	5.2
5	1198+50	2 (EB)	9.14	6,077	147,954	4.9
5	1203+50	2 (EB)	10.47	3,891	164,648	5.1
5	1208+50	2 (EB)	8.20	6,351	166,622	5.3
4	1213+50	2 (EB)	10.54	5,552	130,218	4.4
4	1218+50	2 (EB)	11.90	4,610	128,134	4.1
4	1223+50	2 (EB)	10.51	4,996	146,646	4.4
4	1228+50	2 (EB)	10.31	6,213	124,410	4.4
4	1233+50	2 (EB)	9.97	6,195	130,847	4.5
4	1238+50	2 (EB)	9.58	7,090	131,453	4.3
4	1243+50	2 (EB)	11.40	5,492	124,499	3.9
4	1248+50	2 (EB)	9.14	6,798	147,839	4.4
4	1253+50	2 (EB)	10.25	6,300	129,292	4.2
4	1258+50	2 (EB)	7.86	8,820	160,478	4.5
4	1263+50	2 (EB)	11.16	5,368	135,409	3.9
4	1268+50	2 (EB)	10.70	5,512	126,842	4.4
4	1273+50	2 (EB)	9.77	4,848	169,357	4.7
4	1278+50	2 (EB)	6.78	8,014	221,038	5.1
4	1283+50	2 (EB)	9.13	4,780	192,571	5.0

ection N	Station (ft	Job Stati	Lane N°	D0n (mils	Mr (psi)	Ep (psi)	SNeff (in)	Core
1	2500	1281+00	1 (WB)	11.06	4,192	148,987	4.6	DCB5
4	2750	1278+50	2 (EB)	6.78	8,014	221,038	5.1	DCB5
1	10500	1201+00	1 (WB)	13.83	5,708	89,206	3.4	DCB20
5	10750	1198+50	2 (EB)	9.14	6,077	147,954	4.9	DCB20
t	13500	1171+00	1 (WB)	12.38	5,737	101,425	3.8	CB 25
5	13250	1173+50	2 (EB)	9.61	5,806	143,416	4.7	CB25
1	21000	1096+00	1 (WB)	7.63	8,342	169,493	4.8	DCB40
6	21250	1093+50	2 (EB)	7.04	7,404	192,708	5.7	DCB40
2	32000	986+00	1 (WB)	8.97	9,010	122,490	4,4	CB60
7	32250	983+50	2 (EB)	10.35	7,260	130,751	3.6	CB60
2	35000	956+00	1 (WB)	9.19	7,148	139,832	4.4	DCB65
7	34750	958+50	2 (EB)	11.33	6,921	112,918	3.5	DCB65
2	43000	876+00	1 (WB)	5.75	9,928	230,776	5.7	CB80
7	42750	878+50	2 (EB)	12.09	6,810	104,365	3.3	CB80
2	45500	851+00	1 (WB)	10.04	7,615	117,756	4.1	DCB85
7	45750	848+50	2 (EB)	11.00	6,968	122,569	3.4	DCB85
2	53500	771+00	1 (WB)	9.96	6,698	129,055	4.3	DCB100
7	53250	773+50	2 (EB)	9.50	7,274	134,179	4.2	DCB100
2	56500	739+73	1 (WB)	9.17	9,108	140,999	3.5	CB106
8	56750	737+23	2 (EB)	5.24	32,337	160,192	3.6	CB106

Appendix C-3 - IMS GPR and Distress Data

- 1. GPR Thickness Data
- 2. IMS Distress Data
- 3. Centerline, Levee and Canal Elevations

Jansen, Mark C.

From:

Butler, Dave [dbutler@terracon.com]

Sent:

Tuesday, November 21, 2000 9:25 AM

To:

Jansen, Mark C.

Subject:

RE: Tamiami Trail Testing/Report

Tamiami Trail Surface

Data.xls...

<<Tamiami Trail Surface Data.xls>>

Here is the surface data with the IRI data in both wheel paths. To convert to metric (mm/m), divide by 63.36.

If you can't read the attachment, call me.

----Original Message----

From: Jansen, Mark C. [mailto:MCJansen@pbsj.com]

Sent:

Monday, November 20, 2000 6:53 AM

To:

'Butler, Dave'

Subject:

RE: Tamiami Trail Testing/Report

Dave:

We are interested in including the IRI data for both

wheelpaths in the 75%

report to the Corps of Engineers. The draft of this report

needs to go out

on Wednesday. Can you let me know the possibility of

inclusion of this data

by then? I will be in all day.

Thank you,

Mark

Mark C. Jansen, P.E.

Project Engineer

PBS&J - Winter Park

407-647-7275 x361

----Original Message-----

From: Butler, Dave [mailto:dbutler@terracon.com]

Sent: Friday, November 17, 2000 5:45 PM

To: Jansen, Mark C.

Subject:

RE: Tamiami Trail Testing/Report

We have both left and right IRI data. It will take 1/2 day

of effort to

process and check this data. If you are interested, I will pursue it.

I will be in the office after 2:00 p.m. on Monday.

----Original Message-----

From: Jansen, Mark C.

[mailto:MCJansen@pbsj.com]

Sent: Friday, November 17, 2000 10:04 AM

To: 'Butler, Dave'

Cc: Paul Foxworthy (E-mail)

RSTNUM	Number of each 1/70th mile section	
Object	Number of each 1/10th mile section	
Direction	Direction of travel during test	
Beg Station	Beginning station of test section	
End Station	Ending station of test section	
AREA(ft ²)	Area of test section in FT ²	
All-NWP-II	Area of alligator cracking class II non-wheel path in FT ²	
All-NWP-III	Area of alligator cracking class III non-wheel path in FT ²	
AII-NWP-S	Area of alligator cracking class sealed non-wheel path in FT ²	There were no sealed cracks
All-WP-II	Area of alligator cracking class II wheel path in FT ²	
All-WP-III	Area of alligator cracking class III wheel path in FT2	
AJI-WP-S	Area of alligator cracking class sealed wheel path in FT2	There were no sealed cracks
BLK-IB	Area of block cracking class IB in FT ²	There was no significant block cracking
BLK-II	Area of block cracking class II in FT ²	There was no significant block cracking
BLK-III	Area of block cracking class III in FT ²	There was no significant block cracking
LONG-IB	Area of longitudinal cracking class IB in FT ²	
LONG-II	Area of longitudinal cracking class II in FT ²	
LONG-III	Area of longitudinal cracking class III in FT ²	
LONG-S	Area of longitudinal cracking class sealed in FT ²	There were no sealed cracks
RAVEL-L	Area of raveling low severity in FT ²	There was no significant raveling
RAVEL-M	Area of raveling medium severity in FT ²	There was no significant raveling
RAVEL-H	Area of raveling high severity in FT ²	There was no significant raveling
%CL-IB	Percent of class IB distress	
%CL-II	Percent of class II distress	
%CL-III	Percent of class III distress	
rut_ful_In	Rut depth in inches for the full lane width	
rut_rght	Rut depth in inches for the right wheel path	
rut_left	Rut depth in inches for the left wheel path	

Trail Surface Distribus Days - 1/10 Mile Summary	from Infrastructure Management Systems
Same Treat	Tion I
Ē	

0.0	20	T !	7) L/	9 80		90	10	60	60	923 948	80	9 0	31 31	ri e	7 8	:	6 0	0 0	1 17	100	9	40	10	8.8	00	8.7	90 P	0 00	4	60	8.0	1.0	9 6	0 0	6 60	7	F1 80	(B) (C)	0.0	6 00	8.7	17	Eq.	0 U	90	10	8.8	80	0 1	2 6 8	7	ri el	8.4	9 7			30	20	
27	ŝ	100.2	4 70	8	1202	ž	88	89	103.7	68.3	87.6	7.001	103.5	109.5	103.3	68	e e	04.1	104.7	8.00	40 20 30	20.2	85.4	72.0	104.0	523	202	210	21.5	8 89	640	90.5	28 2	9 60	103.7	100	107.6	68.7	80.0		78.6	106.6	1117	27.6	200	E e	27.0	8	125.4	1001	80	106.9	102.2	103.1	78.2	103.8	730	10 1	
1	95		2		4	1.0	6.7	80	2		00	10	œ.	60	10	60	2 6		6.8	90	10	6.7	9 9	60	20	979	6	0 0	2	100	8	0.0	en e		1	9.0	8.7	6 6	D 6	10	9.6		8 8	0 0	08	9	0.0	•	000	0 0	0.8	9.6	41	9	9 6	20	8	00	
72.1	Z,		2 2	104.0	90 90	82.4	78.6	24.8	18.4	18.8	2	77.4	70.2	30.1	00	80.0	2 2	14.7	69.2	2	0.18	83.4	91.4	82.8	62.5	90.9	2 1	200	81.7	69.2	69.1	653	2	0 00	3	60	24.1	67.7	2 2	020	94.6	77.4	18.2	8 0 0	Z.	87.6	65.4	68.7	70.5	2 5	919	83.8	98.0	65.3	4 2	2	263	600	
10	0		000		0.16	61.0	0.14	0.14	0.15	0.14	0.15	900	0 12	0.13	0.13	0.12	9 4 4		0.73	0.11	0.17	91.0	0.12	010	0.12	0.14	-		0.13	613	613	110	0.22	000	90.0	110	800	9.14	0.10	41.0	0.20	0.11	0.10	0.10	910	0.13	0.10	90.0	0.11	9 6	0.12	0.11	0.11	0.15	7.0	92.0	0.20	****	
0.11	0.10	0.22	010	A 18	012	0 13	0.18	0.13	0.24	0.18	0.17	0.23	0.21	0.28	E o	200	2 2	9 8	0.36	0.24	150	92.0	0.27	200	0.20	20	0.23	910	0.22	0.27	0.27	0.24	5 6		0	0.10	0.12	0 22	2 0	2 20	0.24	0.25	0.15	110	0.24	0.27	9.18	0.16	9.50	970	9.0	0.23	0.23	0.22	0 53	75.0	0 31	0.70	
91.0	90,00	0.24	0.50	12.0	0.29	0.17	61.0	0.17	0.25	0.20	0.10	0.23	0.22	g	2.0	8 3	2 2	0.00	0.36	0.25	0.31	0.27	6.27	0.25	0.21	0.24	200	100	0.22	0.28	0.27	0.21	E .	200	0.24	0.13	0.14	0 23	970	0.26	20	0.25	210	0.19	0.25	120	0.18	0.17	8	200	0.18	0.23	0.73	0.22	9 5	0.33	0.31	40.4	
2000	0 00%	5000	0.000	0.00%	0.63%	7,000	9.000	0.26%	0.00%	5,000	9.000	0.00%	2,000	\$-000°C	2000	0 00%	0.000	2000	0000	0.003	0.00%	0.00%	2000	- 26%	5.000	2000	5000	2000	0.17%	0.00%	0.00%	2,000	0.00%	A 0000	0000	2,000	9.550	0.00%	5000	2000	2,000	9,000.0	0.82%	5000	0.00%	0 13%	9,000.0	2000	5,000	0000	621%	9.000	0.00%	0.00%	2000	0.00%	0.46%		
0.000	2.90%	9556	27.26%	14.00%	20.14%	17.13%	18.47%	29 23%	24,70%	21.66%	24.20%	24 65%	21.28%	20.31%	12.85%	41.40	20 B/ 70	28 70%	25.18%	14.62%	14.70%	17.81%	23,61%	38.42%	20 76%	12075	17.65%	10.70%	18.72%	23 99%	24.32%	19.10%	10.77%	2007	1000	102 %	17.16%	12.83%	18.19%	27 28%	17.17%	19.68%	17.02%	5 5	5,00.75	18.18%	18 43%	12,69%	19.29%	200	13.80%	13 95%	12.09%	22 88%	18.46%	375.61	13.26%	40.000	
0.40%	1 58%	200%	3.99%	4 000	100	7.42%	10.32%	15 30%	5	16.54%	15 00%	16 69%	31.21%	\$21%	9.25%	16.12%	2 200	0 40%	9 59%	2,10 01	\$ 10%	9,000 0	0.13%	9,000	4 16%	0.00%	0.00%	2 97%	8 25%	8 25%	5.68%	2.24%	2.24%	A 450 W	8 00 a	3.41%	2.54%	8 05%	2 87%	2.00%	5,000	5.49%	2,850	2.40%	8 24%	12 22%	10.40%	9.36%	14 81%	221%	2.73%	4.75%	11.14%	6.25%	9 66 6	16.62%	16 69%		
0	ò	0	0	9	0	0	0	0	a	0	0	0	0	0	0	0	0	•	0	0	0	a	0	0	0	0	0				0	0	0	0	0	0	6	ő	0	0	0	o	0	0	0	ė	ò	o	0	0 <	0	0	0	0	9	0	0		
0	0	0	0	0 0	0	0	•	0	0	0	0	0	0	0	0	0	0 0	9 6	0	0	0	0	o	ė	9	0	0	0	•	0	0	0	0	9	9 0	0	0	0	0 0	5 0	0	0	0	0 0	9 0	0	0	ö	0	0 0	0	0	ò	0	0	0	o		ó
0	0	0	0	9 6	0	0	0	0	•	0	0	0		0	0	0			0	0	0	0	•	0	0	0	0	9 0			0	0	0		9 60	0	•	0		0	0		0	0 0	9 6	0	0	0	0	9 6		0	0	0	0 0	9 0			
0	0	0	0 4	9 6	907	0		91			0	0	0	0	0	0 0					0	0	0	96	0	0	0		1 =	0	.0	0	0 ;	3	0	0	35	0	0 6	0 0			25	0 0	> 0	40	0	0	0 1	5 9	2		0	0	0 0		25		
0	20	939	141	7 20	958	20	522	11.7	080	900	765	402	91.0	12	896	442	285	2 2	260	100	101	-086	194	916	ň	920	956	0.80	112	522	585	199	693	9 5	900	787	956	765	2 2	778	999	700	699	900	629	272	620	722	285	9 1	780	684	35	765	020	150	2	700	
2	901	53	2	11.7	282	470	Z,	279	25	1048	939	1057	710	-		1021		200	1	20	222	0		a	500	0	0 44	487	878	323	360	142	142	400	574	216	161	510	470	127	0	25	h	132	22	775	629	000	200	3 3	173	301	706	334	915	1067	1001	999	
0	0	0	9 6		0	0	0	0	0	0	ò	0	0	0	0		s (0	0	0	0	0	0	0	D	0	0 0	0	0	0	0	0	0	ò	0	0	0	0	6	0	0	0	ò	9 6	0	0	6	6	0	p 6	0	0	В	0	9 6	0	o	4	
0	0	0	9 0	0	0	o	0	0	0	0	ó	0	o	•	0	0	•	0	0	0	٥	o	0	0	0	0	0 0		0	0	0	o	0	5 6	0	0	0	ő	0		0	o	0	0 0	0	e	ò	0	0	0	0	0	0	0	9 6	0	0	4	
0	0	0	9 6	0	a	0	0	a	B	0	0	0	0	0	ö	6	> <			0	0	0	0	o	0	0	0 0	0	0	o	Ö	0	0	İ	0	0	o	0 4	0 0	0	6	ō	0	0 0	0	0	a	0	0	9 6	0	0	0	0 0	0	0	0	•	
0	0	0	0 0		0	0	0	0	0	0	0	0	0	0	ė.	0 0				0	0	0	0	0	0	0	0 0	9 6		0	0	0	0 0		0 0	0	0	0 0	0 6	0	9	o	6	0 0	0	0	0	0	0 0	9 6	0	0	0	0	0 0		0		
			ž 2		9	98	65	35	99	×	16			22	7	3 :	8 8	2 3	3	6	ö	96	0	1339	35	9	111		100	252	69	23	0 0			07	*	0	20	2 3		22	60	9 4	32	48	16	200	Q .	2 25	11	0	ő	228	e c		. 0	•	
	0	0 4			0		e e		9	0	9	0	0	0	0	0 0	2 0			o	0	0	ō	0	0	0	0 0		0	0	0	0		5 6		9	0	0	D 0	9 0	0	0	0	0 6	. 0	ò	0	0	0 6	9 6		0	ó	0	6 6		0		
0 0 0	0	0	9 6			0	0	0	0	0	0	0	0	0	0	0	0	9 6	0	0	0	0	0	0	0	0	0 6			٥	a	0		> <	0	ò	o	ó	9 0	0	0	ō	0	9 6			0	0	o e		0	0	ó	ò	6 0		0	6	
	0	60		, a		92	ó	0	0	2	161	227	0	9 5	27	2 2	260	75	183	34	0	109	305	138	9.	E 1	8 5	2	25	103	0	20	a z	102	202	151	7.8	69	0	- M	22	46	0	200	5	×	ō	=		201	0	o	0		ą e	202	ò		,
0000	6559	6655	6778	6335	6336	6225	6336	9336	9	50.00	6335	9	6233	6335	62	6116	6195	8335	6335	6335	6335	6235	6335	6335	6335	9229	9 5	97.09	6336	6335	6335	5233	6100	8335	6335	6335	6335	6936	60.09	8233	6233	6335	6335	9	6335	6336	6335	6335	65.00	6196	6135	6335	6335	9779	6315	6336	6335	80.00	2000
	10.007	61-067	1278+60	274-32	289-04	263-78	1258+40	253+20	78 - 797	202-62	227.25	80-ZE2	226-80	221+22	7.90.7	00-017	1200-40	135-12	1139+84	198+39	179-28	1174-00	168-72	11(5)+64	91+86	27-08	1947.50	1137+04	131+76	1128748	121-20	1115-82	106+36	100+08	1054+80	1089+52	1084+24	1078+96	1068+40	063+12	067+84	99-7-290	1047+28	036.72	031+54	028+16	1020+88	1013+60	1010+32	8(+906	\$94+43	25	283-55	10.01	968-08	962+80	257*52	GREATA	
1	-		1284-118	1	H	Н		1250.48	- 1		- 1	- 1	- 1		- 1	2340404			1	Ш	1	: 1	- 1	- 1		-1	1132400	1		Н	П	1121-20				Ш		1084-24		L	Ш		1052+58	1	П			1020+69		1	П	П		-	973+36		L	ı	
J.			2640 42					\$280 12	1		Л			ı.		10000		ı.	L		L	13200 11				-	16568 11			П		19009		L	L		22176 10			24289 10			25872 10		L		Ш	29040 10		Ι.					33792 6	L	34848 9		
202		8 3	112	25																		П								17424 1						П				23760 2			25364 2										31680 3		1		34320 3		
																							2	2	=	-	. 4				4	2 5							3 83	182	ă	Ã	100									ñ							
DAT TOTAL WE		354 10131 WG	Jis Total wo					I-	_ 1.			365 Total who			168 Total with	THE TOTAL WITH			otal wb	1-		- 1			- 1	DA LOCAL NO	MZ Total wb		384 Total wb			Agy Total with	واء	190 Total we			33 Total wb	194 TOTAL NO	Se Total wo			399 Total IND	400 Total wb	102 Total with		464 Total :wb		405 Total wb	MAN TOWN WO	409 Total wo		411 Total wb	412 Total wo	A13 lotal wo			417 Total wa		

Tamium Toil Surbon Ontress Data - 110 Mile Sumnary From Inharbaches Management Systems

Object Direction	Beg Sta	End Sta B.	End Sta Begle Station 1 End Station AUCASAS ALFARES ALFARES	and Station	ALEARY A	SHAPE ALL	WAP III ALI M		WART AND	THE ALTER	T. RE-E	PAR CO	BI K.III	CHALR	Capta Loss	1000	L PANEL A	BANEL M	P. PAVER	MC.B.	100	11	4 14 14	of role	a left	5-M-1 - 1604	Ser. 1	M 1 - 1006	100
421 Total wo	36432	36960	941+68	938140	6335	0	٥		405			0	0	322	647		0	0	0	8,00.9	51.87%	Э.	0.70	0.27	0.20	6.59	9.6	12.6	0.0
	36960	37438	038+40	231+12	6335	o	0	0	45	0	0	0	0	150	808	0	0	0	o	4.12%	14.43%	ı	0.74	0.22	0.20	75.2		18.4	T.
	37488	38038	931+12	M2-628	6335	٥	0		582		0	0	0	g	888	9	0	0	0	145%	18.71%		0.27	0.27	0.17	53.2	- 5	513	60
424 Total wb	33016	30544	953+94	950+36	6335	o	o	0	339	0	0	a	0	100	909	46	0	0	0	123	33.86%		0.30	0.30	0.17	17.5	=	.000	*
	38544	39072	950+28	915+28	6335	e	٥	0	920	ò	0	0	D	377	919	0	0	0	0	9.828	\$10.62	9,000	0.22	0.22	0.12	653	06	61.6	7.6
428 Total with	39072	20600	915-28	810-00	6333	0	a		455	10	0	0	0	200	6		0	0	0	4.76%	20.92%	L	020		0.21	1.39		87.4	ф 90
427 Total wb	39500	40128	910-00	804+72	6336	0	0		269	23	6	0	0	27.5	1003	0	0	0	0	ž	28.785		030		0.21	203		8 90	SI C
428 Total wb	40128	40656	904+72	805-44	6335	0	o		585	0	0	a	0	5	972		0	0	0	7.91%	40 32.9		0.77		91.0	52.5	9.2	16.3	PA MG
429 Total wo	40858	41184	850-44	824-18	6333	•	o	0	371	0	0	0	0	929	102	0	0	0	0	829%	35 80%	9,000	0.20		0.18	284		78.7	17.
430 Total wb	41184	41712	354+36	99-999	6335	0	o		626	ö	6	0	0	525	783	0	0	0	0	100	20 65%	١.	0.26		0.18	53.1		20.4	Oi ed
431 Total wib	41712	42240	88+898	883+60	8335	0	0	a	473	0	0	o	0	138	200	0	0	0	0	2.10%	17.73%	0.00%	0.22	120	0.34	586		663	8
432 Total wb	42240	42788	883+60	878-32	6223	•	0	0	528	0	0	ō	0	200	1032	0	0	0	0	6.12%	中では	9,000	910	91.0	0.13	75.9	99	24.0	0.0
433 Total wo	42768	43298	878+32	823+04	6335	0	0	0	98	ó	0	0	0	185	1082	0	0	0	0	2 82%	18.60%	5,000	919	0.10	900	128		24.5	0
434 Total wo	43256	43824	873+04	967+79	6335	245	0	a	113		0	0	0	980	833	9	0	0	0	10 42%	18.80%	0.08%	12.0	0.20	91.0	27.29		9.40	10.0
435 Total wb	42824	44352	867+78	862+48	6235	85	٥	0	0	0	0	0	0	919	780	0	0	a	a	12.91%	13.61%	9,000	R.	0.22	0.13	72.8		94.0	40
436 Total wo	64352	44550	352145	857+20	6335	0	0	0	z	0	0	0	0	905	187	ĕ	0	0	0	9 44%	12.31%	9,000	620	200	g	740		87.8	2
437 Total wb	44880	45408	857+20	851+92	6335	2	0	0	90	0	0	0	0	187	808	0	0	0	0	12.48%	1441%	5,000	80	9.54	0.20	60.0	6.6	08.3	6.3
438 Total wb	45408	45036	851+92	848+84	8235	0	0	0	223		0	0	0	643	908	o	0	0	0	10 15%	23.71%	9,000	E	0.23	0.97	61.7		80.2	-1
439 Total wb	40906	45454		841136	6333	0	0	0	270	0	-	0	0	455	625	0	0	a	0	7.18%	17.28%	9,000	220	0 22	0.10	52.7	5	1 22	63
440 Total wb	46464	49992		80+908	6335	0	0	ė	475	0	0	ò	ò	283	930	ő	0	0	a	9.25%	22.18%	2500.0	80	830	916	62		66.7	6.0
441 Total wb	46992	47520		830+90	6335	0	0	ò	115	0	0	0	0	140	707	0	0	0	0	271%	12 90%	1,000	22	0.25	0.11	200	9.5	74.9	90
442 Total wb	47520	48048	630+80	825+52	6223	0	ò	0	432	a	9	ó	0	6/2	733	0	0	0	0	4 40%	18,39%	9,000	820	22.0	0.16	55.1		77.2	N)
442 Total wb	40004	48575		820-24	6236	ó	o	o	ö	0	0	0	0	673	606	ò	0	0	o	10.62%	14.36%	5,000	9.25	7.0	0.17	583		828	40
464 Total wb	48576	49104	620+24	814+96	6336	0	0		64	0	0	e	ō	83	679	ó	0	0	0	8 21%	14 84%	5000	83	0.20	110	20.00	9.2	96.2	10
445 Total wb	40104	49632	8448	809+68	6335	13	ő		23	0	0	ō	0	ĮĐ.	300	ō	0	0	0	2,54%	14 80%	4,000	91.0	0.17	0.11	819	9.0	878	40
446 Total wb	49832	50160	909+68	804+40	6333	0	6	•	o	0	0	0	0	45	903	ě	0	0	0	9 96%	10.04%	9,000	017	91.0	0.11	67.3	0.00	77.1	**
447 Total wb	50150	50635		739-12	6233	28	0		41 141	0	0	0	o	\$2\$	748	0	0	a	a	8.23%	13.24%	0.00%	0.15	0.14	0.07	50.5	6.0	92.6	
442 Total wb	\$000	51216	799412	783+64	6336	0	0	ó	288		6	ö	ö	511	711	0	0	0	0	8.07%	17 30%	3500.0	0.24	0.23	110	70.5	6.6	68.3	9.6
443 Total wb	61216	51744		788-55	6335	0			0		0	ő	0	82	700		0	0	0	3.00%	11.15%	0.00%	0.23	0.22	0.14	78.5	8.7	03.1	4.4
450 Total wb	51744	52272		783-28	6228	0	6	•	0	0	0	0	0	438	215	0	0	o	۰	7.86%	13.76%	0.00%	0.16	91.0	900	63.7	9.0	5 00	*
451 TOTAL IND	52772	92800	201-CR/	778-00	6233	0	0	•	o	0	0	ó	0	989	474	0	0	0	0	9.46%	12.86%	9.000	0.23	0.22	0.15	90	8.7	11.6	64 66
452 Total m5	92800	22228	775+00	772-72	6336	o	ó	0	ö	ō	0	6	0	\$3	397	0	0	0	0	6.69%	6.27%	0.00%	0.17	0.15		404		140	MI MI
453 Total mb	82000	22656	-	757+44	6336	0	0	٥		ö	6	6	ö	8	Z,	ò	0	0	•	13.07%	11 90%	9,000	0.23	0.24	0.16	65.0		63.0	50
454 Total with	2000	M.	767+64	762+16	9229	0	ò	0	0	0	0	ò	•	909	635	ò	0	0	0	12.71%	10 02%	3000	919	9.19	900	524		87.2	8
450 1013 100	04,364	200	91+19	201	8338	ò	ŏ	٥	0	0	9	ò	ō	ŝ		0	0	D	0	2.53%	12 80%	5000	0.23	0.20	0.20	64.2	0	63.7	60
404 10121 100	24,812	25440	20-00	191490	223	0	ő	0	57	0	0	ō	ö	435	413	ō	0	0	0	7 67%	43,73%	\$.00 e	0.23	61.0	0.20	68.7		02.7	4
457 Total ==5	25,440	9200	751+60	1480.13	6336	0	ŏ	o	ó	0	o c	0	0	e S	1023	0	0	•	0	9.14%	16.15%	9,000	970	550	0.72	61.6	0.6	52.2	20
458 Total wb	20903	20498		100-17	6336	ó	ö	o	o	0	0	6	o		717	ò	0	0	0	4.14%	11.52%	4000	0.27	0.25	0.70	68.4	10	87.5	60 RD
453 Total wh	25486	57024		734+49	6336	ó	o	ó	0	0	0	6	•	69	220	0	0	o	0	0.77%	247%	9000	0.23	0.14	0.22	75.6	8.8	50.1	9.9
460 Total wh	67024	57368	734+49	731+15	4004	ó	ø	0	0	0	0	۰	0	0	0	ó	0	Ö	0	900 e	2,000	2000	0.27	20.0	0.27	78.3	8.7	62.2	9
Average	-		The same	-		50.7	90	90	303.7.	*0			0						00	7.1%	18.8%	20.0	62.0	0.72		72.45		20 22	-0
Max		-				354.0	0 0	ľ			00	0	00	1057.0.1	442.0	63.0			00	16.7%	45.7%	1.3%	92.0	920	ſ	108.54		27	0
Min	-					00	00	ı		l			0.0	L			0	00	00	800	200	200	0.13	200		49.42		12.22	7.4
Median						00	0.0						0.0	468.5					00	7.4%	17.8%	200	22.0	0.22	0.14	70.24		92.23	10
Mode						0'0	00	00		00		00	0.0		7850	0.0	0.0 0.0		60	0.3%	0.0%	500	E C	0.10	0.15	68 99		8 7	9
Standard Deviation						85.4	00		378.3				0						60	4.4%	8.1%	620	90 e	900	0.04	3,12		18.76	03

T	F3 1-	rule rule	W	476	1-	64	rel	100	672	al-	47	a j-	40	9.4	ı İr	হার		i je	Tel.	100	+	+1	40	Ŧ	es	0	10	9	9	40	0	ET*			4	0	2	0	a :	4 0	4 4	100	-	0.0	0	un 1	1 -	10		7	7 9	4	0 0	9.0	7 to	1.0	0	00 d	0 0	0	-	1
7.5	-				8	40			"					9 8		0 4			-	-	-				**	•			40	2	2								-						40	2	,			1	40	1				8.0	8.5	n	994		12	
1005	107 8	1118	24.7	900	11811	1102	112.6	82.3	123	1123	107.2	000	100	200	1000	100	2	400	160.6	107.8	118.8	117.0	116.7	103.0	100	96.1	85	20	55	18.2	2	61.0		200	3 8				71.1	102	2 2				67.00			3 5			8 101 8	Ш										
0.0	-	*			100	4 8	0.5	9.4	9	9	9	90		0 0			200			00	8.9	60	8.7	9.2	2.8	8.5			9.0	9.1	6.9	80	8	. 0	2 0	0.0	10		0.8				0.0	8	8			-	8	40	8.8	ď							9 2			
125.0	27.5	94.9	710	200	20 00	1010	876	20.7	ŝ	999	227	911	1 89	2 2	0	177		200	200	2		70.2	808	51.8	30.4	65.4	66.9	67.1	814	2	0.80	9.79	9	7	410	46.5	7 58	618	63.7	580	282	8 5	55.1	38	57.8	57.2	999	76.4	200	200	76.1	57.5	37.6	63.4	4 6	619	53.1	920	48.7	480	100	1
0.14	9.19	0.19	0.15	0 10	0.77	619	613	619	910	0.12	0.19	0.28	0.18		0.0	47.0		2 44	0.00	0.50	0.78	0.30	0.22	0.24	0.73	9.16	0.00	921	0.23	0.20	0.22	0.28	0.22	27.0	200	946	0.84	80	0 10	0.11	0.10	0.00	0000	0.13	0.16	91.0	0 10	200	9 49	0.17	0.12	0.00	0.18	000	0	920	80	0.17	0.15	2 0 0	200	19:50
010	0.19	0.73	034	0.31	0.17	0.15	618	0.14	0.16	0.10	0.24	610	0.75	620	7	200	220	0.00	1	0,0	0.17	910	0.18	91.0	95.0	0.18	97.0	0.74	0.18	0.20	0.21	0.21	0.24	0.22	17.0	3 5	200	0.75	62.0	0.23	6.0	77.0		0.18	0.12	0.13	910	9 0	950	0.21	0.15	0.19	0.19	020	0 22	97.0	0.20	0.18	22	0 0	9 4 6	
4	0.24	92.0	0.31	0.33	970	120	0.20	61.0	0.22	0.21	0.25	80	0.26	0.24	0.23	920	0.25	170	170	200	1	0,0	0.24	0.24	0.24	0.27	0.27	0.26	0.24	0.24	P. 0	620	920	0.25	8 6	***	0.13	0.30	0.30	0.23	0.21	W 0	0.10	0.20	21.0	0.10	0 12	0 4	9 0	0.03	0.17	0.19	0.23	0.20	2	5 50	0.23	0.21	0.23	9.00	95.0	200
MOL- IN	2000	500	57%	91%	4 6	50%	0.13%	48.8	9,000	9,000 0	5000	5000	1000	5000	1000	0.76%	5.000	5000	8000	- Inter	2000	2010	275	0.00%	2000	0.25%	%90.0	%000	2,000	4.00 0	0.21%	9,000	4,000	9,000	2000	*000	0.00%	0.00%	4.51.0	5.000	5,000	0.00%	5000	0.13%	9,000	0.18%	0.28%	0.48%	0.00%	0.000	2710	9.22%	9,000	0.00%	1000	0.000	2000	9,000	9000°	0.00%	0 0000	
		i.			\$1.74% C	41.37%		19.23%		32.42%				15 00%						2000	W. 0. 17	20 414	100	25.70%		-			20.54%						16 52%				-	9.26	27 56%	21.52%	2000	0.16%	33 42%	25.50	2 52%	187%	12.11%	12012	22.24%	12.74%	2,59 //	2.07%	3.70%	2000	5.32%	4.86%	13.12%	100	14. C. C.	
0 0000					108% St	1	6.00% 35			4 02% 32	22 22					97.22.0			0.37%		1 00 M										13		0.43% 33				1 000				557% 2		5 61% 2	200		4 09%	45% 2			3.1676						2122	2 35%	254%		1.65%		
	0		0	9 0	0 0	0 0	9	0	0	0 14	0 12	0	0 12	0 12	0 15	0 10	0	0 10	0	9 :	0	9 6	400			0 44	0 10	. 0	0		0	0 3	0 10	0	0	0	0		0	0	0	0	0 1	0 0	0	0	0	0	0	0 0		0	0	0	0	0 4	9 0		0	0		
A RAVELA		. 0		0	0	0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	9 4					10		0	0	0	0	0	0	0	0	0 0	9 6	0	0	0	0		0 0	0	0	0	0	0				0	0	0	0 0		0	0	0	٥.	
VELA RAYEL	. 0	. 0		0	0	0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0								0	0	0	0	0	0	0	0	0		0	0	0	0		0 <		0	0	0	0	0	6		0	0	0	0	9 0	0	0	0	0	
LONG-8 RA				0	0	0 0		0	0	0	6	0	0	0		0	0	0	0	0	0 0		0									0	0	0	a	0		5 6		0	0	0	0	0 0	0	0	0	0	0	0	0		0	0	0	0	0	6	0	0	0	
100	. 0	0	12	15	2	90		36	0	0	0	0	0	0	0	48	0	0	0	6	0		8 :			14			. 0		13	9	0	0	64	0	6		12	0	0	0	0	0 0		100	#	55	•	0		2	0	0	0	0	00		•	0	3	
CONCH.	200	1657	37	1.00	296	950	1	802	913	1075	484	983	í	875	959	741	138	629	916	1053	2	927	900	2000	1001		199	734	1694	19	22.0	047	1036	158	236	2	219	710	616	8	614	Bee	150	2 5	1	198	933	8		1	1	ì							553			
8-0401	207	200	145	423	512	167	200	200	446	888	782	472	783	878	778	2	458	667	667	1003	100	100	177	5 5	1400	200	273	200	3	7	90	243	38	252	274	2	60	0 27	2 5	322	415	66	88	512	201	652	280	259	212	200	B S	200	96	27	17	139	200	19	0 82	8	413	
RAB			0	0	0	0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 4		1		4	. 0		-	0	0	0	0	0	0	0	0.0		0	0	0	0	0	0 6		0	0	0	0				0	0	0					0	
8.64				0	0	0 0		0	0	0	0	0	0	0	0	0	0	0		0	0	0		9 6								0	0	0	0	0	0	0						9	0 0			0		0	6 4	0 0			0	0	000		0	0		
S BLKB				0	0				9			0		0	0	0	0	0	0.0	0	0		0	0	3 6			5 4						0	0	0	0	0 0			ò		0	0	0	000	0		0	0	0.0			. 0	0	0	0 0		0	0		
S-ABAPS	ľ			0	0	65	1					0	0	0	0	0		0	0	49	0		0	3	9 6			0				e	. 0	0	0	:0	0	0 0	9 6			0	0	0	0		0	0	0	0	0 .	5 0	0		0	0	0 0		0	0	0	
P-1 ALWP-E			774	75				174	197	100	688	9	48	3	1	2	902	551	233	124	2	626	583	346	***	250	0.0	740		100	600	1	1760	0	0	0	0	2	100	517	941	205	345	7.1	977	111	08	32	118	7	200	000	256	173	115	0	0 0		6	a	43	
PS ALMPA			0	0	0	0			. 0					0	0	0	0	0			0	0	0		0	0		0 0				. 0			0	۰	0	0	0 0	0		0	0	0	6		0	0	٥	٥	0	0	9 0		0	6		0 0	0	a	٥	
AP-8 AB-10				0	o	0		0			0			0	0	0	0	0		ž.			0			0	0	0 0	3 6			0	. 0	0	0	0	•	0	0 6		0	0	0	0	0	9 0	0	0	0	0	0	0	9 0	0	0	0	6	0	0	0	0	
WP-1 AS-W		, 12	000	123	613	176	2	9 4	140	211	5	2	117	6	10	E.	150	173	133	360	8	ž	200	i i	010	9000	609	9	2	272	36	30	1 1	0	23	0	22	ň	521	24	161	142	162	443	8	3 12	404	250	0		=	0 9	9 0	12	4	11	0	8	68	28	0	
AVEAUTH ALMIN'S ALMIN'S ALMIN'S	2 2	1	6335	8235	6333	6335	977	6505	8558	6225	6335	6335	6338	6336	6336	6235	6335	6336	6335	6335	6336	6336	6235		65.00	9000	6229	200	2000	0000	8535	9118	6225	6335	6336	6336	6235	9	6770	6135	8135	8135	6223	6335	6335	6229	6336	6936	60356	200	223	6335	8338	6335	6335	6335	6335	6000	1	6233	6335	
	24.64	31.00	751+95	27.2	15+21	67+79	10.00	784-64	18.8	61.49	19-67	27.7	810+03	16+31	65+01	18+629	631+15	SE+43	841+71	65+39	52+27	57-55	20.00	11+11	6742	200	2.5	224.50	10.40	20.00	10+56	200	10-01	26+19	31+47	36+75	42+03	47+31	804-258	89+16	262143	973+71	28+82	64+27	69+55	1000411	66+90	10+67	15-35	21-23	150-67	67-15	47+78	47+53	62-51	61.499	1063-47	24+05	1.5.6.1	1084+58	789+637	
Sapin Station 1 End Station	274.54	1	748-67 79	L		1		778-95 75	I	1			804+75 B					831+15 8	E35-43 B				557-55 BE							900-20 0				ı				1	967431 9		L	L	873+71 8			G0-808	П		1	П	1021+23 10					Ш		1083-76 17		1079+31, 10		
Sa Sapa St	27. 27.						1	4090 778					7920 304																		17947 904			100					22178 94.							20400 988					29568 102		T				33264 105		34545 107			
E Ded St.						-1											4 10032																															1							Ĺ		1					
Beg Sta	615	970-	1584	21.12	H	2163	E 20	27.6	6760	Sarra	6178	6464	7300	7820	8448	PA PA	85D4	10032	10501	1106	11616	12164	1267	1320	1372	1429	1478	1531	100	9	1559	1705	18781	19000	18534	2005	2058	2112	2164	22204	2323	2376	24288	2481	2534	27867	2892	2745	2796	2651	29040	7687	20090	3115	31680	\$220	\$273	32264	34320	3484	3537	
200		-1.	456 Total ed		100		470 Total ND	471 Total eb	1000	474 Total an	Total on	Total at	Total ab	678 Total ep		480 Total eb					485 Total eb	488 Total eb	487 Total 40	Total etc	_ 1	_1.	191 Total ed	_	133 TOTAL 4D	4 10131 60	26 Total en		Tal Total do		500 Total eb	Set Total es			SQ4 Total et	ENG Total on		508 Total en		S10 Total et		512 1021 60		1	518 Total co		618 Total eb		SEG TOTAL CO		Ca Total et	524 Total eb	25 Total ab	SZE Total et	528 Total en		630 Total eb	

Tamana Trail Surface Distress Data - 1/10 Mile Summary From Infragructure Management Systems

Termers from Surface Distant Days, 1910 Mile Summary From Infrastructure Memogenees System's

	Object Direction	- Perg Sta	End Sta B.	End Sta Begin Station 1 End Station	'n,	AREARS A	子を子を手	WHITE PLANTS THERE	THE PL	7427	- W-W-	M.K-6	200	1 55	3	1	201	SOUTH T	SAMELS A	AND W	Ą	d		i					
	2 Total eb	38432	Desec	1095-15	1		0	0				0	0			900	0	0	0	0							9.1	289	
	3 Total eb	35350	37458	1100+43	1105-71	6335		0			0	0	0	0	486	505	0	0	0	0							1.6	210	
		37488	38016	1105+71	1110-99	4306	0	0			0	0			118	447	0	0	0	0							-	744	
		38016	38544	1110+09	1116+27	6335		0	ı	0	0	0		0	3118	503	0	0	0	0							8.2	6 22	-
Section Control Cont		38544	33072	1118+27	1121+55	6235	0	0			0	0	0	0	1	57.4	0	0	0	0							9.2	9/09	
State Color Colo		39072	39500	1121+55	1126-83	6336	0	0		0	0	0	0	0		907	0 0	0	0	0							1.6	616	
Column C		99600	40128	1126+83	11525+11	8996	0	0		0	0	0	0	0	15	573	0 0	0	0	0								88.8	-
Column C		40178	40656	1132-11	1137-38	6035	3	0			0	0		0	215	872	9	0	0	0								350	
Column C		25,909	41184	01.777.10	1345451	6236				7	0	0	. 0	0	\$18	157	0		0	9								77.7	
The control of the		40000	24240	4440467	11.47.45	2000										272	0			. 0								200.3	
Column C	Total at	41712	49940	30-13-11	1164-22	*****								9		15				0								784	
Column C	00 10101	20000	-		27.75	1				-	9 9										ľ							11.0	
Column C		42240	427.00	67-0011	10-8011	270		0	į		9	0	0	9	1	0.00	9			9		1				١		80.8	
Column C		427.08	43296	11.58+51	1163+79	6359	20	0		0	0	0	0	0		998	9	0	0	0		1							1
Column C		43226	40804	1163-79	1168-07	6223	n			100	0 0	0	0	0		481	9	0	a	0					1			0	1
Marie Mari		42824	44352	1169-07	1174-35	6335	620	0		0	0	0	0	0	8	406	0 0	0	0	0								g	
Column C	Total ed	44352	44860	1174+35	+179-63	6335	15	0		12	0	0	0	0		656	0 0	0	o	0		0						102.4	
Continue Continue	Total eb	44880	45408	1179-63	1184-51	6225	N	0		0	9	0	o	a		625	0	0	0	0								a d	
Column C	Total co	45,408	45936	1184-91	1190-19	6223	0	0		0	0	0	0	0		835	0	0	0	0								105.4	
Control Cont	Total eb	45936	45454	1190+19	1185+47	6335	100	0		61	0	0	0	0		2022	0 0	0	0	0								808	
Marco Marc	Total no	40404	46992	1196+47	1200+75	6335	0	0			0	0	0	0		-75	0	0	0	0							8.0	1001	
Column C	Total eb	28839	47520	1200+75	1206-03	5253	0	0			0	0	0	0		953	0	0	0	0							99	103.1	
Column C	Total ec	47520	45045	1206-03	12111-31	6233	0	6	-	5.8	0	0	0	a		785	0 0	0	0	0							8.0	86.8	
	Total so	48048	48576	1211+31	1216-59	\$336	99	0		15	0	0	0	0		190	0	0	0	0								77.8	
Secondary 127-15	Total ed	48578	49104	1218+59	1221+67	6335	130	0		- 69	0	0	0	0	683	505	0	0	0	0							6.7	104.7	
Secretary Secr	Total eb	49104	49632	1221-87	1227+15	223	109	0		63	0	0	0	0	207	749	0 .	0	0	0								103.5	
5,000 1,00	Total eb	69632	50150	1227+15	1232+43	6223	23	0			0	0	0	0	55	304	0	0	0	6								1001	
51/24 120-77 1444-75	Total eo	60160	89909	1232+43	1237+71	6335		0	0	0	0	0	0	0	0	699	0	0	0	0							08	67.1	
String String		90998	51216	1237+75	1242+99	6335	450	0	0	0	0	0	0	0	0	282	0	0	0	0								55.1	
STATE STAT		51216	51744	1242+99	1248+27	8335	6	a	0		0	a	0	0	65	316	0 0	0	0	0	-	- 0						13.0	
Secretary Secr	Total eb	51744	57272	1248-27	1753-45	6335	0	0	0	0	0	0	0	0	106	361	0	0	0	0							9.1	129	
State Stat	Total eb	52272	22800	1253+55	1258+83	6335	0	0	0	0	0	0	0	0	69	909	0	0	0	0								79.6	
59300 53560 1264-17 12	Total co	62900	63328	1258+83	1264+11	6335	232	0	-	32:	0 0	0	0	0	11	101	0	0	0	0	-2							1048	1
State Stat		63328	63856	1284+11	1266+36	8335	0	0	0	0	0	0	0	0	92	657	0 0	0	0	0								504	1
Secretary 1257-125		53856	54364	1260+39	1274-67	8335	0	0	0		0 0	0	0	0	63	903	0 0	0	0	0								783	
September 1798-77 September Septem	Total eo	54324	54912	1274+87	1279-95	6223	0	0	0		0	0	0	ō	180	989	0	0	0	0								1010	
56440 5696 1264-7 6336 74 0 0 0 0 0 0 0 0 0	Total eb	54912	35440	1278+85	1202-23	6335	0	0	0	0	0 0	0	ő	0	374	586	0 0	0	0	0								6 67	
6669 56696 1304-51 1204-51 1204-51 1204-51 1204-51 1204-51 1204-51 1204-51 1204-51 1204-51 1204-51 1204-51 1204-51 1204-51 1204-51 1204-52 1204-51 1204-52 120	Total eb	65440	20908	1285+23	1290+51	6335	7.4	0	0	0	0	0	6	0	01	513	0	0	a	0			2,000					154	1
9440 57004 1285-70 1301-07 6335 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		55068	56496	1290+51	1285-79	6335	0	0	0	0	0	0	0	0		125	0	6	0	0			3,000					123	
31024 5/362 1301-0 1364-33 3822 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		56456	57004	1295-79	1301-07	6335	0	0	Ĭ	4.8	0	ò	0	0	135	99	0 0	0	0	0			9.00%					64.2	
1393 0.2 69 5842 31 0.9 60 0.0 0.0 3431 7345 51 0.0 60 0.0 0.0 64% 18.7% 0.1% 0.34 0.20 0.19 8704 8.9 9243 10.0 10.0 0.0 16.2% 0.0 0.0 0.0 16.7% 0.1% 0.1% 0.24 0.2 0.3 0.4 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0		57074	57252	1301-07	1304+33	3832	0	0		0	0	0	0	0	0	22	0	0	0	0			9,000 0					108.6	
1036 0 24 0 0 628 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								П	П														20.00					02.43	1
1080 240 00 1850 2220 00 00 00 00 00 00 00 00 00 00 00	agen						29.5		1	1	00	0.0	0	4						9 0		20.00	200		ı	ľ		180 04	1
470 00 00 10 10 00 00 00 00 00 00 00 00 00		-	-	-		-	0.800			4		000	00		1					5 6		A MIC.	2000					25 03	
420 00 00 710 00 00 00 00 00 00 00 00 00 00 00 00 0			-				00	1		i	1	9 4	0 0	1	1					2 4		200	0.000		1			92.32	
198 CO 000 WIN WIN WIN CO 00 00 00 00 00 00 00 00 00 00 00 00 00	dian			-			420					0	0	1						0.0	Ì	g 4	0.000					ENTR	BAUA
	8						00					000	0.0							9.0		100	200					2000	1

Tamiami Trail Centerline Elevation Data (Lowest to Highest) 10.06 C/L OF ROAD 10.89 C/L ROAD 10.06 C/L OF ROAD 10.91 C/L OF ROAD 10.92 C/L OF ROAD 10.24 C/L OF ROAD 10.92 C/L OF ROAD 10.38 C/L OF ROAD 10.93 C/L OF ROAD 10.39 C/L ROAD 10.93 C/L OF ROAD 10.4 C/L OF ROAD 10.93 C/L ROAD 10.4 C/L ROAD 10.94 C/L OF ROAD 10.46 C/L OF ROAD 10.94 C/L OF ROAD 10.46 C/L OF ROAD 10.95 C/L OF ROAD 10.46 C/L OF ROAD 10.96 C/L OF ROAD 10.47 C/L ROAD 10.97 C/L OF ROAD 10.48 C/L OF ROAD 10.98 C/L OF ROAD 10.49 C/L ROAD 10.98 C/L OF ROAD 10.51 C/L ROAD 10.52 C/L OF ROAD 11.03 C/L OF ROAD 11.03 C/L ROAD 10.54 C/L OF ROAD 11.04 C/L OF ROAD 10.55 C/L OF ROAD 11.08 C/L OF ROAD 10.55 C/L OF ROAD 11.08 C/L OF ROAD 10.55 C/L ROAD 11.08 C/L OF ROAD 10.56 C/L OF ROAD 10.57 C/L ROAD 11.09 C/L OF ROAD 11.09 C/L OF ROAD 10.57 C/L ROAD 11.1 C/L ROAD 10.57 C/L ROAD 11.11 C/L ROAD 10.59 C/L OF ROAD 11.12 C/L OF THE ROAD 10.59 C/L OF ROAD 11.13 C/L OF ROAD 10.62 C/L ROAD 11.13 C/L OF ROAD 10.64 C/L ROAD 11.13 C/L ROAD 10.66 C/L OF ROAD 11.13 C/L ROAD 10.7 C/L 10.71 C/L OF ROAD 11.14 C/L OF ROAD 10.72 C/L OF ROAD 11.14 C/L OF ROAD 11.14 C/L OF ROAD 10.72 C/L OF ROAD 10.72 C/L OF ROAD 11.14 C/L ROAD 11.15 C/L ROAD 10.72 C/L ROAD 11.18 C/L OF ROAD 10.74 C/L OF ROAD 11.19 C/L ROAD 10.75 C/L OF ROAD 11.2 C/L OF ROAD 10.75 C/L ROAD 11.2 C/L OF ROAD 10.75 C/L ROAD 10.78 C/L OF ROAD 11.25 C/L OF ROAD 11.27 C/L OF ROAD 10.79 C/L OF ROAD 11.29 C/L OF ROAD 10.81 C/L OF ROAD 11.3 C/L ROAD 10.82 C/L OF ROAD 11.31 C/L OF THE ROAD 10.82 C/L OF ROAD 11.32 C/L OF ROAD 10.83 C/L OF ROAD 11.34 C/L OF ROAD 10.84 C/L OF ROAD 11.34 C/L OF ROAD 10.87 C/L OF ROAD 11.38 C/L ROAD 10.87 C/L OF ROAD 11.39 C/L OF ROAD 10.88 C/L OF ROAD 11.41 C/L OF ROAD 10.89 C/L ROAD

11.42 C/L OF ROAD

11.42 C/L OF ROAD 11.44 C/L ROAD

11.45 C/L OF ROAD

11.47 C/L OF ROAD

11.61 C/L OF ROAD

11.77 C/L OF ROAD

11.84 C/L OF ROAD

11.87 C/L OF ROAD

11.9 C/L OF ROAD

11.92 C/L OF ROAD

11.78 C/L

10.94827 Average

11.92 Max

10.06 Min

SOURCE: PBS & J SURVEY. 11/70/00

SUBJECT:	LEVER ELEVATIONS	DATE:/ 3 - / - 0 SHEET NO: JOB NO:
Sorce	: (ross sections (4+ for Wor Maximum elevations on the level. from IBSJ Survey.	Developed from Tim developed
WEST	17.2	
	17.1	
	181	
	18.0 15.1 16.2	
DIST	15.4	7
	(10 encl.) Avg = 17.12 MAK = 21.0	

CHK. BY: _

Note: Elevations were not determined for 3 sections because of Insufficient data.

OPTIONAL FORM 89 (7.90)

	FAX TRANSMITT	AL # of pages.
Christopher T Smith	Paloh Bingham	11000 Sm. H
▲ 11/02/2000 08:49 AM	407-647-4143 Note 75 to 317-70-5 5000-101	9-4-232- GENERA STANCES
To: rlbingham@pbsj.com@exchange	to provide the second s	
Subject: L-29 Canal Data \$333 & \$334		
Ralph -		
Attached are data for L-29 canal as requested (ascis the east elevation. You can interpolate between tocations.	ii). S-333 tailwater is the western ele the reading to determine the stage a	evation and S-334 t the boring
Chris		
Forwarded by Christopher T Smith/CESAJ	//SAJ02 on 11/02/2000 08:47 AM	
Gregory A Stormant		
11/02/2000 08:34 AM		RECEIV
To: Christopher T Smith/CESAJ/SAJ02@CESAJ		TRANSPORTATI
cu: Subject: S333 & S334		NOV 0 7
As requested,		PBSL NCWI
S333 Tailwater: June - July 2000		K. Dinah
		0
s333_tw.asc	*	
S334 Headwater: June - July 2000	•	
s334_hw.asc		FILE
		
Aaron	Ģ.	W
which Sam cell		
Ralph Should be one average between Z		
average between Z		
11/1/2 00		
11]*		

R	ECET	VED ION DES	G
		2000	
10.000		INTER P	A,FX
1. 2.	nal	am	_
	-0		
			_
		-	
FILE			_

- WEST

IE COAST CANALS/S333/BLEV-TAILI/1DAY//

RTS Ver:999 Prog:DSSMAT LW:02NOV00 07:32:06 Tag:T14295 Prec:0 Start: 31MAY2000 at 2400 hours; End: 01AUG2000 at 2400 hours; Number: 63

Units: FT-NGVD Type: INST-VAL 31MAY2000, 2400; 7.03 01JUN2000, 2400; 6.93 02JUN2000, 2400; 6.91 03JUN2000, 2400; 6.89 04JUN2000, 2400; 6.88 05JUN2000, 2400; 6.87 6.97 0GJUN2000, 2400; 07JUN2000, 2400; 6.95 08JUN2000, 2400; 6.91 09JUN2000, 2400; 7.03 10JUN2000, 2400; 7.01 11JUN2000, 2400; 7.07 12JUN2000, 2400; 7.10 13JUN2000, 2400; 7.09 14JUN2000, 2400; 7.07 15JUN2000, 2400; 7.31 16JUN2000, 2400; -901.00 17JUN2000, 2400; -901.00 18JUN2000, 2400; 7.28 19JUN2000, 2400; 7.28 7.29 20JUN2000, 2400; 7.29 21JUN2000, 2400; 22JUN2000, 2400; 7.15 23JUN2000, 2400; 7.15 24JUN2000, 2400; 7.24 25JUN2000, 2400; 7.20 26JUN2000, 2400; 7.25 7.28 27JUN2000, 2400; 28JUN2000, 2400; 7.21 7.20 29JUN2000, 2400; 30JUN2000, 2400; 7.19 01JUL2000, 2400; 7.18 02JUL2000, 2400; 7.19 03JUL2000, 2400; 7.25 04JUL2000, 2400; 7.25 05JUL2000, 2400; 7.26 06JUL2000, 2400; 7.27 07JUL2000, 2400; 7.35 08JUL2000, 2400; 7.29 09JUL2000, 2400; 7.30 10JUL2000, 2400; 7,33 11JUL2000, 2400; 7.32 12JUL2000, 2400; 7.32 13JUL2000, 2400; 7.30 14JUL2000, 2400; 7.29 15JUL2000, 2400; 7.30 16JUL2000, 2400; 7.28 17JUL2000, 2400; 7.17 18JUL2000, 2400; 7.11 19JUL2000, 2400; 7.07 20JUL2000, 2400; 7.07 21JUL2000, 2400; 7.13

22JUL2000, 2400;	7.16
23JUL2000, 2400;	7.17
24JUL2000, 2400;	7.19
25JUL2000, 2400;	7.12
26JUL2000, 2400;	7.09
27JUL2000, 2400;	7.06
28JUL2000, 2400;	7.03
29JUL2000, 2400;	7.04
30JUL2000, 2400;	7.03
31JUL2000, 2400;	6.99
01AUG2000, 2400;	6,99
END FILE	

-EAST

JE COAST CANAI(S/S334/ELEV-HEAD//1DAY//

RTS Vor:999 Prog:D85MAT LW:02NOV00 07:32:06 Tag:T14296 Prec:0 Start: 31MAY2000 at 2400 hours; End: 01AUG2000 at 2400 hours; Number: 63

Units: FT-NGVD Type: INST-VAL 31MAY2000, 2400; 7.21 01JUN2000, 2400; 7.14 02JUN2000, 2400; 7.14 03JUN2000, 2400; 7.10 04JUN2000, 2400; 7.09 05JUN2000, 2400; 7.07 06JUN2000, 2400; 7.11 07JUN2000, 2400; 7.13 08JUN2000, 2400; 7.14 09JUN2000, 2400; 7.21 10JUN2000, 2400; 7.19 11JUN2000, 2400; 7.2412JUN2000, 2400; 7.29 7.27 13JUN2000, 2400; 14JUN2000, 2400; 7.26 15JUN2000, 2400; 7.47 16JUN2000, 2400; -901.00 17JUN2000, 2400; -901.00 18JUN2000, 2400; 7.47 19JUN2000, 2400; 7.48 20JUN2000, 2400; 7.49 21JUN2000, 2400; 7.47 22JUN2000, 2400; 7.36 23JUN2000, 2400; 7.35 24JUN2000, 2400; 7.38 25JUN2000, 2400; 7.3926JUN2000, 2400; 7.43 27JUN2000, 2400; 7.4428JUN2000, 2400; 7.40 29JUN2000, 2400; 7,41 30JUN2000, 2400; 7.38 01JUL2000, 2400; 7.38 02JUL2000, 2400; 7.45 03JUL2000, 2400; 7.44 04JUL2000, 2400; 7.46 05JUL2000, 2400; 7.45 06JUL2000, 2400; 7.46 07JUL2000, 2400; 7.53 08JUL2000, 2400; 7.49 09JUL2000, 2400; 7.4910JUL2000, 2400; 7.5211JUL2000, 2400; 7.5212JUL2000, 2400; 7.51 13JUL2000, 2400; 7.51 14JUL2000, 2400; 7.48 15JUL2000, 2400; 7.48 16JUL2000, 2400; 7.47 17JUL2000, 2400; 7.37 18JUL2000, 2400; 7.31 19JUL2000, 2400; 7.27

20JUL2000, 2400;

21JUL2000, 2400;

7.26

7.32

22JUL2000, 2400;	7.35
23JUL2000, 2400;	7.38
24JUL2000, 2400;	7.34
25JUL2000, 2400;	7.31
26JUL2000, 2400;	7.29
27JUL2000, 2400;	7.25
28JUL2000, 2400;	7.22
29JUL2000, 2400;	7.24
30JUL2000, 2400;	7.20
31JUL2000, 2400;	7.17
01AUG2000, 2400;	7.18
END FILE	12113

Appendix C-4 – Pavement Design Calculations

Sheet:	
Date:	11/30/00

Steps in Determining Pavement Thickness:

- 1. Traffic- ESAL Calculation
- 2. Mr of the Subgrade
- 3. Determine Other design variables
- 4. Complete pavement thickness design.

NOTE: All references in the pavement design process are from the Florida DOT Flexible Pavement Design Manual, January 2000.

Tamiami Trail Alternatives Study Pavement Design Notes

Sheet:	
Date	11/30/00

Step 1- Traffic

- 1. Traffic-ESAL Calculation
- 2. Florida DOT ESAL Equations from Florida DOT Pavement Design Manual

OBJECT: TAMIAMI TRAIL - TRAHIL

COMP. BY: ______ CHK. BY: ____ DATE: ____8/9/30 SHEET NO: JOB NO:

DESIGN TRAFFIC

AAST = 5,200 Veh / day } FROM

"PERTINENT DATA"

(also ret J. schnettler E-Mail, 5/16/00- See attached).

20 GrowA:

(Assumed) - charged to 2.22 for 60 years (see graph)

Truck Classification: 3.6802 > 18 wheel 42 -> 18 wheel

see below

Colourd. assure Traffic Doubles to 10,000 AADT by 2050

Design ANT = 20 - 3.3 Million ESALS / FROM "DESIGN TRAFFIC 30 - 5.6 M AND ESANS CHART") - 11.7 M

NOTE: 2.22 Grown used because if 4.66% is used, The Traffic in so years WILL BE MORE THAN THE 2-LANE ROAD CAN ACCOMMODATE. SEE "TAMIAMI TRAIL TRAFFIC blowst" CHART FOR A COMPARISON.

TAMIAMI TRAIL MODIFIED WATER DELIVERIES TO EVERGLADES NATIONAL PARK

PERTINENT DATA

US 41/TAMIAMI TRAIL

West Project Limit	S-333 Sta. 580+46 on Levee 29	
East Project Limit	S-334 Sta. 15+26 on Levee 29	
Florida Dept. of Transportation Section Telescope Florida Dept. of Transportation Functional Classification Roadway Design Speed	2	7
Existing Average Daily Traffic (1999)	9,200 11.47% 9.29% 52.66% 56,520 feet/ 10.7 miles	PAVEMENT/ ESAL CALC. DATA
Datum Design Stage Upstream of L-29 Borrow Canal Design Stage at L-29 Borrow Canal Design State Downstream of US 41/Tamiami Trail Contract Price Alt. 1: Existing Alignment and Profile with Four New Bridges	9.0 feet 9.0 feet	
Alt. 2: Existing Alignment with Raised Profile and Four New Bridges: Without Water Quality Treatment With Water Quality Treatment Alt. 3: New North Alignment with Raised Profile and Four New Bridges: Without Water Quality Treatment	\$ 23,387,038 \$ 39,093,978 \$ 55,119,470	
With Water Quality Treatment Alt. 4: New South Alignment with Raised Profile and Four New Bridges: Without Water Quality Treatment With Water Quality Treatment Alt. 5: New Alignment on Structure	\$ 29,943,240 \$ 31,536,767	

Jansen, Mark C.

From:

Sent: To:

Schnettler, Jack S. Tuesday, May 16, 2000 11:58 AM Anderson, John R.; Jansen, Mark C. Yerkes, Eugene H.

Cc:

Tamiami Trail has about 5,200 daily vehicles on it, with a 9.2% peak hour percentage and 11% trucks, according to an FDOT count just west of Krome Ave. This means the peak hour has about 460 vehicles in the peak hour, about 250 in the peak direction, or 1 about every 4 minutes each way on the average. Beyond that, we would need to talk to FDOT on closure procedures, or make assumptions. Maybe do the estimate worst case and "average" and include worst case in the table. I'm awaiting feedback from Gene Yerkes.

Tamiami Trail Alternatives Study Traffic data for design- used to construct Design Traffic and ESALS Chart Based on Florida DOT Pavement design information.

Df	0.5					
T24	11.5%		1999 AADT	5200)	
LF	1.0					
E18	0.96					
Growth	2.2%					
Year	AADT	ESAL	ACCUM ESAL		Summary:	
2004	6,400	128,947	128,947		20- Years	3,395,503
2005	6,541	131,784	260,731		30- Years	5,645,893
2006	6,685	134,683	395,415		50-Years	11,920,940
2007	6,832	137,646	533,061			
2008	6,982	140,675	673,735			
2009	7,136	143,769	817,505			
2010	7,293	146,932	964,437			
2011	7,453	150,165	1,114,602			
2012	7,617	153,468	1,268,070			
2013	7,785	156,845	1,424,915			
2014	7,956	160,295	1,585,210			
2015	8,131	163,822	1,749,032			
2016	8,310	167,426	1,916,458			
2017	8,493	171,109	2,087,567			
2018	8,679	174,874	2,262,441			
2019	8,870	178,721	2,441,162			
	9,066	182,653	2,623,815			
2020	9,265	186,671	2,810,486			
2021		190,778	3,001,264			
2022	9,469	194,975	3,196,239			
2023	9,677	199,264	3,395,503	20 Years		
2024	9,890	203,648	3,599,152	LO TOUTO		
2025	10,108		3,807,280			
2026	10,330	208,129	4,019,987			
2027	10,557	212,707	4,237,374			
2028	10,790	217,387	4,459,544			
2029	11,027	222,169				
2030	11,269	227,057	4,686,601			
2031	11,517	232,052	4,918,653			
2032	11,771	237,158	5,155,811			
2033	12,030	242,375	5,398,186 5,645,893			
2034	12,294	247,707				
2035	12,565	253,157	5,899,050			
2036	12,841	258,726	6,157,776			
2037	13,124	264,418	6,422,195			
2038	13,413	270,235	6,692,430			
2039	13,708	276,181	6,968,611			
2040	14,009	282,257	7,250,867			
2041	14,317	288,466	7,539,334			
2042	14,632	294,813	7,834,146			
2043	14,954	301,298	8,135,445			
2044	15,283	307,927	8,443,372			
2045	15,619	314,701	8,758,073			
2046	15,963	321,625	9,079,698			
2047	16,314	328,701	9,408,398			
2048	16,673	335,932	9,744,330			
2049	17,040	343,322	10,087,653			
2050	17,415	350,876	10,438,528			
2051	17,798	358,595	10,797,123			
2052	18,190	366,484	11,163,607			
2053	18,590	374,547	11,538,154			
2054	18,999	382,787	11,920,940	50 Years	0	

Florida Department of Transportation Annual Vehicle Classification Report Count Year 1997

County: 87 - DADE

Site Co Sec Sub MilePost Description

0003 87110000 25.660 SR90/US41/TAMIAMI TRL, 200'W OF SR997/KROMEAV, DADE

Func. Class: 02 - Rural Principal Arterial -- Other

Survey Type	e: Portable Duration:	1 Days Annua Volume	l Average Daily	
, Tclass 01 MC	PTORCYCLES	55	1.247	
Light lax Class 02 CA		3033	68.93	87.052
	CK-UPS AND VANS	743	16.88	
Class 04 BU		4	0.05	1
	AXLE, SINGLE UNIT TRUCKS	74	1.68	(
	AXLE, SINGLE UNIT TRUCKS	164	3.73	19.272
	AXLE, SINGLE UNIT TRUCKS	58	1.31	ſ
	AXL TRCTR W/ 1 OR 2-AXL TRLR	108	2.46/	
	AXLE TRACTOR W/ 2-AXLE TRLR	135	3.077	
	AXLE TRACTOR W/ 3-AXLE TRLR	6	0.13	
	AXLE MULTI-TRLR	11	0.24	3.6802
	-AXLE MULTI-TRLR	1	0.02	
	Y 7 OR MORE AXLE	10	0.22	
Class 14 NO		0	0.00	
Class 15 OT		0	0.00	
C1435 15 01				
		4400	100.00	

	Sur	mmary Daily	Statist	cics
		ly	Design	
24T&B	=	12.94%	DHT =	6.47%
24T	=	12.85%		
24H	=	11.18%	DH3 =	5.59%
24M	=	1.76%	DH2 =	0.88%

Classes: 01-03 Passenger Vehicles, 04-13 Truck & Buses,
05-13 Trucks, 04-05 Medium Trucks, 06-13 Heavy Trucks17-Mar-1998
11:03:21 Page 1717 6_87_FLAT_TRUCK.TXT

TABLE 3.1

DESIGN PERIODS

The Following Design Periods Will Be Used For Flexible Pavement Designs.

TYPICAL New Construction or Reconstruction			20	Years
Pavement Overlay Without Milling	8	to	20	Years
Pavement Overlay With Milling		40		
Limited Access	12	to	20	Years*
Non-Limited Access	14	to	20	Years*
Pavement Overlay of Rigid Pavement	8	to	12	Years

Notes

* Shorter design periods can be used if there are constraints such as curb and gutter or scheduled future capacity projects that justify limiting overlay thickness. These reasons should be documented in the pavement design package.

The $ESAL_D$ required for pavement design purposes can be computed using the following equation:

$$ESAL_{D} = \sum_{y=1}^{y=1}^{x} (AADT \times T_{24} \times D_{F} \times L_{F} \times E_{18} \times 365)$$

where:

 $ESAL_D$ = Number of accumulated 18-kip(80-kilonewton) Equivalent Single Axle Loads in the design lane for the design period.

y = The year that the calculation is made for. When y=1, all the variables apply to year 1. Most of the variables are constant except AADT which may change from year to year. Others may change when changes in the system occur. Such changes include parallel roads, shopping centers, truck terminals, etc.

x = The Design Year.

AADT = Average Annual Daily Traffic.

T24 = Percent Heavy Trucks during a 24 hour period. Trucks with 6 tires or more are considered in the calculations.

 D_r = Directional Distribution Factor. Use 1.0 if one way traffic is counted or 0.5 for two way traffic. This value is not to be confused with the Directional Factor use for planning capacity computations.

L_F = Lane Factor converts directional trucks to the design lane trucks. Lane factors can be adjusted to account for unique features known to the designer such as roadways with designated truck lanes. L_T values can be determined from Table D.2.

E₁₈ = Equivalency factor which is the damage caused by one average heavy truck measured in 80-kilonewtons Equivalent Single Axle Loads. These factors will be periodically updated based on Weigh-In-Motion (WIM) data. E₁₈(E₈₀ values can be determined from Table D.3.

TABLE D.3

EQUIVALENCY FACTORS E₁₈ (E₈₀) FOR DIFFERENT TYPES OF FACILITIES

	Flexible Pavement	Rigid Pavement	
Freeways			
Rural	1.05	1.60	
Urban	0.90	1,.27	
Arterials and C	collectors		
Rural	0.96	1.35	
Urban	0.89	1.22	
USE FOR TAMIN	AMI TRAIL =	E18 = E IN	SPREADSHEET

TABLE D.2

LANE FACTORS (L,) FOR DIFFERENT TYPES OF FACILITIES

A must To		Lanes In On	ne Direction or more Three Lanes
5200: 0.922 - 34 Use 1.0	000 000 000	0.94 0.88 0.85	0.82 0.76 0.72
for Conservations 16 20 30	000	0.82	0.70
	000	0.81	0.68
	000	0.77	0.65
*4.0	000	0.75	0.63
*50	000	0.73	0.61
60	000	0.72	0.59
.70	000	0.70	0.58
80	000	0.69	0.57
100	000	0.67	0.55
120 140 160 200	000 000 000	0.66 - - -	0.53 0.52 0.51 0.49

The equation that best defines this Lane Factor $(L_{\overline{r}})$ information is:

 $L_F = (1.567 - 0.0826 \times Ln(One Way AADT) - 0.12368 \times LV)$

where:

 L_r = Proportion of all one directional trucks in the design lane.

LV = 0 if the number of lanes in one direction is 2. LV = 1 if the number of lanes in one direction is 3 or more.

Ln = Natural Logarithm.

Source - National Cooperative Highway Research Program
Report 277, Portland Cement Concrete Pavement
Evaluation System (COPES), Transportation Research
Board, September 1986

Sheet:	
Date:	11/30/00

Design Traffic Notes:

The Corps of Engineers provided the following Florida DOT Memorandum to PBS&J, Dated May 5, 1999 with "Traffic Projection" as the subject.

Use of the 4.6% growth rate over 50 years causes a high AADT at the end of the 50-year period as shown in the following chart entitled "Tamiami Trail Traffic Growth." The AADT shown in 2054 exceeds that which can be accommodated by a 2-lane roadway. The 2.2% growth rate was agreed upon by J. Schnettler and the design team at the August 17, 2000 Design Session in Fort Lauderdale.

Florida Department of Transportation

JEB BUSH GOVERNOR OFFICE OF PLANNING - DISTRICT SIX 602 SOUTH MIAMI AVENUE, MIAMI, FLORIDA 33130 FHONE: (305) 377-5910 (SC) 452-5910 FAX: (305) 377-5684 (SC) 452-3684

THOMAS F. BARRY, JR. SECRETARY

<u>MEMORANDUM</u>

DATE:

May 5, 1999

TO:

Jorge Frases, Project Manager

FROM:

Rolando Jiménez, Senior Systems Statistics Project Manager RI

COPIES TO:

Albert Dominguez, Bob Perez, Mike Ciscar, file

SUBJECT:

Traffic Projection:

State Job No.: 87110-XXXX

FM No.: N/A

Budget Item No.: N/A

FAP No.: N/A

State Road No.: SR 90/US-27/Tamiami Trail From: 11 miles W of SR 997/Krome Ave

To: SR 997/Krome Ave County: Miami-Dade

Type of Construction: Reconstruction

In compliance with your request, attached is a computer printout showing the estimated projected AADT's and equivalent axle loading from the year of completion, 2002 to the year 2022. The Level of Services Standard for this facility according to LOS Rule 14-94 is "D". This section of road is operating at a Level of Service "C" or better.

The data provided assumes 2 lanes undivided, flexible pavement, and the following factors: K(30 hrs) = 9.29%, D = 52.66%, and T = 11.47%.

These projections are based upon an estimated 4.66% growth rate determined from historical traffic count data.

If you have any questions, please advise.

RJ/ri

Attachments

18 kip EQUIVALENT SINGLE AXLE LOAD ANALYSIS - HISTORICAL

18 KID EXCITABLIS	TANARE WATE FARM WINDERS	S-1115CS-
DISTRICTWIDE DESIGN T	RAFFIC FOR PD&E and DESIGN ANA	LYSIS INFO / FACTORS
SECTION NO	.: 87120000	
SEGMENT NO	u: 1	
ITEM NO	.:	•
PROJECT DESCRIPTION	N: SR 90/SW 6 Street/Tamiami Trail	
LOCATION 1 DESCRIPTION:		LOCATION NO:1
Fro	om Krome Av. to 11 mi W. of Krome Av.	
GROWTH RATE FORMULA:	2 5	
	Choose A,B or C here:	
II "A" or "C", continue to next section.	Between Existing & Opening -	0
If "B", enter rates as decimals: (1%=0.01)	Between Opening & Mid-Design -	<u> </u>
W. 18	Between Mid-Design & Design -	0
DESIGN INFORMATION:		
	AADT	Daily Directional Split
EXISTING YEAR: 19	99 5200 (decin	nai format, 1%=0.01): 0.5
SEGMENT NO.: ITEM NO.: PROJECT DESCRIPTION: SR 80/SW 6 Street/Tamiami Trail COCATION 1 DESCRIPTION: From Krome Av. to 11 mi W. of Krome Av. From Krome Av. to 11 mi W. of Krome Av. From Krome Av. to 11 mi W. of Krome Av. From Krome Av. to 11 mi W. of Krome Av. From Krome Av. to 11 mi W. of Krome Av. From Krome Av. to 11 mi W. of Krome Av. From Krome Av. to 11 mi W. of Krome Av. From Krome Av. to 11 mi W. of Krome Av. From Krome Av. to 11 mi W. of Krome Av. CC Catler Av. From Krome Av. to 11 mi W. of Krome Av. CC Catler Av. From Krome Av. to 11 mi W. of Krome Av. CC Catler Av. From Krome Av. to 11 mi W. of Krome Av. CC Catler Av. From Krome Av. to 11 mi W. of Krome Av. CC Catler Av. From Krome Av. to 11 mi W. of Krome Av. CC Catler Av. Catler Av. From Krome Av. to 11 mi W. of Krome Av. CC Catler Av. Catler Av. From Krome Av. to 11 mi W. of Krome Av. CC Catler Av. Catler Av. Catler Av. From Krome Av. to 11 mi W. of Krome Av. CC Catler Av. Catler Av. Catler Av. From Krome Av. to 11 mi W. of Krome Av. Catler Av. Catler Av. Catler Av. From Krome Av. to 11 mi W. of Krome Av. Catler A		
SECTION NO.: ST420000 SEGMENT NO.: 1 ITEM NO.: PROJECT DESCRIPTION: SR 80/SW 8 Street/Temiami Trail LOCATION 1 DESCRIPTION: LOCATION NO: 1 From Krome Av. to 11 mi W. of Krome Av. GROWTH RATE FORMULA: A: Straight-Line B: Enter Growth Rates Choose A,B or C here: C: Enter all AADT's B'A' or 'C', enterious in seat sestion. Between Existing & Opening - 0 Between Mid-Design & Design - 0 DESIGN INFORMATION: EXISTING YEAR: 1999 5200 (decirnal format, 1%=0.01): 0.15 OPENING YEAR: 2002 6000 T (decirnal format, 1%=0.01): 0.15 MID-DESIGN YEAR: 2012 7600 Lanes in One Direction: 1 DESIGN YEAR: 2012 7600 Lanes in One Direction: 1 DESIGN YEAR: 2012 7600 Lanes in One Direction: 1 DESIGN YEAR: 2012 7600 Lanes in One Direction: 1 SEMBLANT VALUE OF THE VALUE OF		
DESIGN YEAR: 20	9200	à.———
-	NOTE: AADT values have been rounded	to nearest hundred.
(selected with an X)	FLEXIBLE PAVEMENT	RIGID PAVEMENT
=	SN = S/THICK	<u>ProProjec</u>
RURAL FREEWAY:	1.050	1.600
URBAN FREEWAY:	0.900	1.270
RURAL HIGHWAY:	0.960 X	1.350
URBAN HIGHWAY:	0.890	1.220
OTHER (enter factor & X):	1000	
(1) Equivalency Factors are based on Updated Pavern	nent Damago Feolora Memorandum, daled Octobor 1, 139). DB.
Lane Factors developed by Copes Equation		
		oading) Procedure*,
	1 1 11 /	100. Inc. 477 5 5/4/99
	Signature Firm	
. N. C. I. C.	rive the Design Traffic and 18 klp ESAL. I con	furnith the results. 5/5/00
	Signature	Date

I E

a

p

1 S

lı 5 ir

C

TO

18 klp EQUIVALENT SINGLE AXLE LOAD ANALYSIS - LOCATION 1

DISTRICTWIDE DESIGN TRAFFIC FOR PD&E and DESIGN ANALYSIS INFO / FACTORS

YEARS

1999

SECT. NO. 87120000

SEG. NO .:

ITEM NO .:

FLEXIBLE PAVEMENT RURAL HIGHWAY

0.960

From Krome Av. to 11 mi W. of Krome Av. SN = 5/THICK

YEAR	AADT	(1000)	(1000)	D	т	LF	
1999	5200	105	0	0.5	0.115	1.000	0
2000	5500	111	0	0.5	0.115	1.000	0
2001	5700	116	0	0.5	0.115	1.000	0
2002	6000	121	121	0.5	0.115	1.000	0
2003	6200	124	245	0.5	0.115	1.000	0
2004	6300	127	372	0.5	0.115	1.000	0
2005	: 6500	131	503	0.5	0.115	1.000	0
2006	6600	134	637	0.5	0.115	1.000	0.
2007	6800	137	774	0.5	0.115	1.000	0
2008	7000	140	914	0.5	0.115	1.000	0.
2009	7100	143	1057	0.5	0.115	1.000	0.
2010	7300	147	1204	0.5	0.115	1.000	0.
2011	7400	150	1354	0.5	0.115	1.000	0.
2012	7600	153	1507	0.5	0.115	1.000	0.
2013	7800	156	1663	0.5	0.115	1.000	0.
2014	7900	160	1823	0.5	0.115	1.000	0.
2015	B100	163	1986	0.5	0.115	1.000	0.
2016	8200	166	2152	0.5	0.115	1.000	Ó.
2017	8400	169	2321	0.5	0.115	1.000	O.
2018	8600	172	2494	0.5	0.115	1.000	0.
2019	8700	176	2669	0.5	0.115	1.000	٥.
2020	8900	179	284B	0.5	0.115	1.000	0.
2021	9000	182	3030	0.5	0.115	1.000	0.
2022	9200	185	(3216)	0.5	0.115	1.000	0.
			2 0	425 - Mat	Lis PESS	Closely w/	in 10

Opening to Mid-Design Year ESAL Accumulation (1000):	1386
Opening to Design Year ESAL Accumulation (1000):	3005

I have followed the "Design Traffic (Fratfic Forecasti-to and 18 kip Equivalent Single Ade Loading) Procedure". adopted by the Florida Department of Transportation

Prepared by:

F.R. Aleman & Assoc. Inc. Firm

I have reviewed the methodology used to derive the Dosign Traffic and 18 kip ES Reviewed by: (FDOT)

Signature

Signature

1996 Level of Service: Handboox Florida Department of Temsportation

Table 5-6

NULL
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
HURAL UNDEVELOPED AREKS FREEWAYS FREEWAYS SAZOO 20,000 (2
NURAL UNDEVELOPED NURAL UNDEVELOPED A
AUL'ILANE V AUL'ILANE V AUL'ILANE V AUL'ILANE V BOCU SYNE P SE NI AN NA NA NA NA NA NA AN SCIATED SET AN AN AN AN AN AN AN AN AN A

Sheet: _____ Date: 11/30/00

Step 2- Subgrade Properties

- 1. Case 1 Subgrade Mr
- 2. Case 2 Subgrade Mr

Sheet: _____ Date: 11/30/00

Subgrade Properties

Case 1

For this case, the existing pavement remains in place. It was used for the following options:

- · Existing Facility Improved
- · Alternative 2 Without Water Quality Treatment

For this option, all designs are assumed to include the following cross section:

5" AC (Includes 6" AC with 1" milling) 12" LBR 40 Granular Base

FWD Testing was completed to determine both a design $M_{\rm ri}$ value and a design $SN_{\rm eff}$ value. The testing was completed by ERES Consultants (see the report in the Appendix). Also, see the additional data entitled "Modified FWD Data" which is included in this section for more information.

Assumptions from FWD data:

- The average $M_{\rm ri}$ value is 6,177 psi and was rounded down to 6,000 psi.
- The 90^{th} percentile (value such that 90% of the values are greater) $M_{r!}$ value was 4,883 psi, which was rounded up to 5,000 psi.
- The Mean + 2 Standard deviations (Reference Florida DOT Flexible Pavement Design Guide Sec. 6.3.1) M_{ri} value was 15,469 psi which was rounded to 15,000 psi.
- The 90th percentile backcalculated SN_{eff} was 3.5.
- The SN_{eff} , taking the mean minus 1 standard deviation was 3.6.

It is noted that from the FWD data and the Boring/Geotechnical information summarized in Plate G1-1, there is no obvious

Tamiami Trail Alternatives Study Pavement Design Notes Sheet: _____ Date: 11/30/00

significant influence on the $M_{\rm ri}$ from the peat level, bedrock level or water table level.

SUMMARY: $M_{ri} = 5,000 PSI$

 $SN_{eff} = 3.5$

Sheet: ______ Date: 11/30/00

Case 2

This option assumes complete muck removal down to the limestone bedrock. It was used for the following options:

- Alternative 2 With Water Quality Treatment and other options requiring new embankment
- Alternative 3 Both Options
- Alternative 4 Both Options

Assumptions:

- Muck removal is completed on a 1:2 Control line per Florida DOT Standard Index #500.
- Select fill to replace the muck is A1-A3 material. Assume LBR of A1-A3 material is 12,000 psi.
- 12" LBR-40 Subgrade stabilization was used in the new construction. This results in a structural coefficient of 0.08.

SUMMARY: $M_{ri} = 12,000 PSI$

Sheet: _____ Date: 11/30/00

Step 3- Determine Other Variables

- 1. Other Variables
- 2. Other Notes
- 3. Design Elevations

Other Variables

Section 5 of the Florida DOT pavement design manual was used to determine the additional design variables. They include the following:

- Standard Deviation 0.45
- Reliability = 90% This is based on the Florida DOT pavement design provided in the example, as well as the fact that it is the high end of the New Rural Arterial Section.

Other Notes:

- Base extensions of the mainline into the shoulder and outside the shoulder are 4 inches, and based on Florida DOT pavement design guide P. 2.1.
- Muck Removal Limits, and the 1:2 (rise:run) are based on Florida DOT Roadway and Traffic Design Standard Index #500 (January 2000).

Elevation Data:

This data represents the statistics derived from the PBS&J topographic survey conducted for this project. The data is from the 500' centerline shots and the approximate 1 mile levee shots. For the centerline data, the first few hundred feet (beginning of job to approx. station 745+00) was eliminated because it was coming down from the higher elevation of 16.0. All measurements are in feet.

		Roadway CL	Top of Levee
Average	(ft)	10.95	17.1
Maximum	(ft)	11.92	21.0
Minimum	(ft)	10.06	15.1

Sheet: ______ Date: 11/30/00

Step 4- Pavement Thickness Calculations

- 1. Case 1 (Overlay) Calculation
- 2. Case 2 (New Construction) Calculation
- 3. Shoulder Pavement Thickness Calculation

Sheet: ______ Date: 11/30/00

Case 1 (Overlay) Thickness Design

The design variables are repeated here:

- 90% Reliability
- The 90th percentile M_{ri} was 5,000 psi (rounded)
- The 90^{th} percentile $SN_{eff} = 3.5$

50-Year Design Calculations:

- 50-Year Traffic= 11.7 Million ESALS
- $SN_{read} = 5.75$ for $M_{ri} = 5,000$ psi, Design High Water =7.5 ft.
- $SN_{\rm reqd} =$ 6.17 for $M_{\rm ri} =$ 4,000 psi, Design High Water =9.3 ft.

50-Year Design, 5,000 psi (DHW = 7.5 FT)

Existing: SN_{eff} From FWD Testing 3.50

New: 6'' AC x 0.44 = 2.64

6.14 > 5.75 (Reg'd) OK

This is the design before the water level increase. Note that the FWD measurements are also measuring the effect of the softer peat layer below, which is already saturated.

To account for the increase in water level and resultant softening of the subgrade material, the $M_{\rm ri}$ was dropped to 4,000 psi and the design checked. This is also the lowest value on the Florida DOT design charts. The results of that are presented below for comparison.

50-Year Design, 4,000 psi (DHW = 9.3 FT)

Existing: SN_{eff} From FWD Testing 3.50

New: 6'' AC x 0.44 = 2.64

6.14 < 6.17 (Req'd) OK

The difference is 0.15 inches AC, which is negligible.

Tamiami Trail Alternatives Study Pavement Design Notes Sheet: _____ Date: 11/30/00

From this analysis, the 6" overlay is sufficient to handle an additional rise in the design high water level. Additionally, a 50-year design is conservative in that there will be an overlay every 7 years, which provides the opportunity to increase the thickness gradually over the years if needed.

For the 7 year overlays, the asphalt that has lost some of its load carrying ability (0.15 structural coefficient) will be removed and new asphalt (0.44 structural coefficient) can be added in a manner to either maintain existing grade or to increase the overall pavement structure.

Sheet: ______ Date: 11/30/00

20-Year Design Calculations:

To check against the Florida DOT recommended design period, a 20year design was examined. The following variables change for these calculations:

- 20-Year Traffic= 3.3 Million ESALS
- $SN_{regd} = 4.83$ for $M_{ri} = 5,000$ psi, Design High Water =7.5 ft.
- $SN_{regd} = 5.21$ for $M_{rl} = 4,000$ psi, Design High Water =9.3 ft.

20-Year Design, 5,000 psi

Existing: SN_{eff From} FWD Testing 3.50

New: $3'' AC \times 0.44 = 1.32$

 $4.82 = 4.83 \, (\text{Req'd}) \, \text{OK}$

20-Year Design, 4,000 psi

Existing: SN_{eff From} FWD Testing 3.50

New: 4'' AC x 0.44 = $\frac{1.76}{}$

5.26 > 5.21 (Req'd) OK

Because the Corps. of Engineers has requested a 50 year analysis, 6" is used for the concept development.

Sheet:	
Date:	11/30/00

Design Calculations using Florida DOT Reduced Layer Coefficients and Florida DOT Recommended Mr

To check the SN_{eff} design procedure, an evaluation of the existing pavement using the Florida DOT reduced layer coefficients was used (ref: Florida DOT Flexible Pavement Design Manual, Sec. 6.4.4).

- The pavement is in "Poor" condition based on the Florida DOT Condition survey data (Cracking rating 7 or less).
 This section of Tamiami Trail is rated 6.
- Mean + 2 Standard deviations (Reference Florida DOT Flexible Pavement Design Guide Sec. 6.3.1) $M_{\rm ri}$ value of 15,000 psi was used.
- To account for the raised water level, the layer coefficient for the granular embankment directly below the asphalt was modeled as a weak LBR 30 subgrade. This is conservative because soaked CBRs of 35 or greater were reported in the geotechnical testing. The LBR is 35/0.8 = 44. The structural coefficient of this material was reduced to 0.06 from 0.08, a 25% reduction. This is similar in magnitude to the 20% reduction of the Mri.
- 50-Year Traffic= 11.7 Million ESALS; SN_{regd} = 3.97
- 20-Year Traffic= 3.3 Million ESALS; SN_{read} = 3.24

50-Year Design, 15,000 psi

Existing: 5" AC x 0.15= 0.75

12'' LBR $30 \times 0.06 = 0.72$

New: 6'' AC x 0.44 = 2.64

4.11 > 3.97 (Req'd) **OK**

Sheet: ______ Date: 11/30/00

20-Year Design, 15,000 psi

Existing: 5'' AC x 0.15= 0.75

12'' LBR $30 \times 0.06 = 0.72$

New: 6" AC x 0.44 = 2.64

4.11 > 3.24 (Req'd) **OK**

This shows that the a 4" overlay is adequate for the requirements, and the 6" overlay is more than sufficient for the 50 year design using the Florida DOT guidelines.

A check on the areas of overbuild (to get the entire roadway to 11.0 before the overlay begins) was also conducted. It shows that with the overbuild, there is more than sufficient asphalt to support the traffic. The overbuild will consist of up to 12" of asphalt (minimum elevation 10.06). The extreme case is shown below:

50-Year Design, 15,000 psi WITH OVERBUILD

Overbuild: 12" x 0.2 = 2.40

Existing: 5" AC x 0.15= 0.75

12" LBR 40 x 0.06 = 0.72

New: 6'' AC x 0.44 = 2.64

6.51 > 3.97 (Req'd) OK

Sheet: ______ Date: 11/30/00

Case 2 (New Construction) Thickness Design

The design variables are repeated here:

- 95% Reliability (increased for new construction)
- M_{ri} of the A1-A3 material is 12,000 psi

50-Year Design Calculations:

- 50-Year Traffic= 11.7 Million ESALS
- $SN_{regd} = 4.56$ for $M_{ri} = 5,000$ psi

50-Year Design, 5,000 psi

New:	¾" Friction course	0.0
	4" AC Structural x 0.44 =	1.76
	10" Limerock Base x 0.18 =	1.80
	(or Optional Base Group 9)	
	12" LBR 40 Stab. Base x 0.08 =	0.96
		4.52 = 4.56 (Req'd) OK

Note that periodic resurfacings can address any issues that develop in the 50 year design period.

Tamiami Trail Alternatives Study Pavement Design Notes Sheet: _____ Date: 11/30/00

Shoulder Thickness Design

The shoulder shall consist of 4" of asphalt surface and 8" limerock base. This exceeds the amount required in Chapter 8 of the Florida DOT design guide, however the construction traffic warrants the thicker surface and base. Since traffic will be shifted onto the shoulders during the construction, as well as future construction and maintenance.

TABLE 5.1

RELATIONSHIP BETWEEN RESILIENT MODULUS (M_R) AND LIMEROCK BEARING RATIO (LBR) SAMPLE VALUES

The following are some Limerock Bearing Ratio (LBR) input values that were input into these equations to obtain Resilient Modulus (M_R) values.

Limerock Bearing	Resilient	Modulus	
Ratio (LBR)	PSI	MPa	
10	4500	30	
12	5000	35	
14	5500	39	
16	6000	43	
18	7000	47	
20	7500	51	
22	8000	54	
24	8500	58	
26	9000	61	
28	9500	65	
30	10000	68	
32	10500	72	
34	11000	75	
36	11500	78	
38	12000	81	
40	12000	84	

Page 5.5.0

TABLE 5.2

RELIABILITY (%R) FOR DIFFERENT ROADWAY FACILITIES

Facility	New	Rehabilitation
Limited Access	80 - 95	95 - 99
Urban Arterials	80 - 90	90 - 97
Rural Arterials	75 - 90	90 - 95 TAMIANI
Collectors	75 - 85	90 - 95

Notes

The type of roadway is determined by the Office Of Planning and can be obtained from the Roadway Characteristics Inventory (RCI).

The designer has some flexibility in selecting values that best fits the project when choosing the Reliability (%R).

Considerations for selecting a reliability level include projected traffic volumes and the consequences involved with early rehabilitation, if actual traffic loadings are greater than anticipated. A detailed discussion of reliability concepts can be found in the AASHTO Guide For Design Of Pavement Structures, .

For traffic volume ranges, refer to Chapter 2, Design Geometrics and Criteria, of the Plans Preparation Manual - Topic No. 625-000-005.

TABLE 5.6

GENERAL USE OPTIONAL BASE GROUPS AND STRUCTURAL NUMBERS
(STANDARD INDEX 514) (inches)

			BAS	E THIC	KNESS			CODES		
		1	T			Ваѕе	Options			
Base Group	Structural Range	Group Pay Hem Number	Limerock LBR 100	Cemented Coquing	Shell Rock LBR 100	Bank Pun Shell	Graded Aggregate Base	Type 8-12.5	8-12.5 And 4" Granular Subbase, LBR 100 *	RAP Dase
950	1,00	Base	1 101	42.1	(.18)	(.18)	(.15)	(.30)	308.15	(NA)
1	.6575	701	(.18)	(.18)	4"	4"	4/2"	4" △		5"0
2	.8090	702	5"	5"	5"	5"	5 <u>/</u> "	4" [△]		
3	.95 -1.05	703	5/2"	5/2"	5/2"	5/2"	6 <u>1</u> "	4" ^Δ		
4	1.05-1.15	704	6."	6"	6"	6"	7 <u>1</u> "	4" 4		
5	1.25-1.35	705	7"	7"	7"	7"	8 <u>/</u> "	4 <u>!</u> "		
6	1.35-1.50	706	8"	8"	8"	8"	9"	5"		
7	1.50-1.65	707	82"	8/2"	81"	8 <u>/</u> "	10"	5½"		
8	1.65-1.75	708	9 <u>!</u> "	92"	9/2"	9 <u>/</u> "	#"	5½"		
9	1.75-1.85	709	10"	10"	10"	10*	12*	6"	4"	
10	1.90-2.00	710	#"	11"	· #"	11"	13"0	6 2 "	4/2"	-
II	2.05-2.15	7//	12"	12"	12"	12*	14"0		5"	1
12	2.20-2.30	7/2	12 <u>‡</u> *	12½"	122	122"		7/2"	5½*	-
13	2.35-2.45	713	132 = 0	13½"®	132"0	13 2 0		8"	6"	-
14	2.45-2.55	7/4	14" 0	14"0	14"0	14"0		81"	61.	-
15	2.60-2.70	7/5						9"	7"	

^{*} For gronular subbase, the construction of both the subbase and Type 8-12.5 will be poid for under the contract unit price for Optional Base. Granutar subbases include Limerock, Cemented Coquina, Shell Rock, Bank Run Shell and Graded Aggregate Base at LBR 100. The base thickness shown is Type 8-12.5. All subbase thicknesses are 4°.

Ø To be used for widening only, three feet or less.

[△] Based on minimum practical thicknesses.

Restricted to non-limited occess shoulder base construction.

TABLE 6.1

REDUCED STRUCTURAL COEFFICIENTS OF ASPHALT MATERIALS PER UNIT THICKNESS

Recommended Criteria

Good - No Cracking, minor rutting/distortion

Fair - Crack Rated 8 or higher, minor rutting and / or distortion

Poor - Cracking or Rutting rated 7 or less

Pavement Condition should be based on the surface appearance of the pavement (cracking, patching, rutting, etc.) and may be supplemented by additional testing.

	Layer	Original Design	Pave Good	ment Condi Fair	tion <u>Poor</u>
	FC-2 or FC-5	0			
	FC-1 or FC-4	0.20	0.17	0.15	0.12
	FC-3	0.22	0.20	0.17	0.15
	FC-6	0.44	0.34	0.25	0.15
	Type S or SP	0.44	0.34	0.25	0.15
TAMIAMI	Type I	0.37	0.30	0.23	0.15
TRAIL	Type II	0.20	0.17	0.15	0.12
EXISTING ASPHALT	Type III	0.30	0.25	0.20	0.15
701111121	Binder	0.30	0.25	0.20	0.15
	ABC-1	0.20	0.17	0.14	0.10
	ABC-2	0.25	0.20	0.16	0.12
	ABC-3	0.30	0.25	0.20	0.15
	Type B-12.5	0.30	0.25	0.20	0.15
	SAHM	0.15	0.13	0.11	0.08
_	SBRM	0.15	0.13	0.11	0.08

TABLE A.4A

REQUIRED STRUCTURAL NUMBER (SN_R) 90% RELIABILITY (%R)

RESILIENT MODULUS (Mg) RANGE 4000 PSI TO 18000 PSI

RESILIENT MODULUS (Mg) , (PSI x 1000)

```
12
                                                                        13
                                                                             14
                                                                                   15
                                                                                        16
                                                                                              17
                                                   9
                                                       10
                                                            11
                        4
                             5
          ESALD
                    3.02 2.77 2.59 2.44 2.31 2.21 2.12 2.04 1.97 1.91 1.86 1.81 1.76 1.72 1.68
          100 000
                    3.23 2.97 2.77 2.61 2.47 2.36 2.27 2.19 2.11 2.05 1.99 1.94 1.89 1.84 1.80
          150 000
                    3.39 3.11 2.90 2.73 2.60 2.48 2.38 2.30 2.22 2.15 2.09 2.03 1.98 1.94 1.89
          200 000
                    3.52 3.23 3.01 2.84 2.69 2.57 2.47 2.38 2.30 2.23 2.17 2.11 2.06 2.01 1.97
          250 000
                    3.62 3.33 3.10 2.92 2.78 2.65 2.55 2.46 2.37 2.30 2.24 2.18 2.12 2.07 2.03
          300 000
                    3.71 3.41 3.18 3.00 2.85 2.72 2.61 2.52 2.44 2.36 2.30 2.23 2.18 2.13 2.08
          350 000
                    3.79 3.49 3.25 3.07 2.91 2.78 2.67 2.58 2.49 2.42 2.35 2.29 2.23 2.18 2.13
          400 000
                    3.87 3.56 3.32 3.13 2.97 2.84 2.73 2.63 2.54 2.46 2.39 2.33 2.27 2.22 2.17
          450 000
                    3.93 3.62 3.38 3.18 3.02 2.89 2.77 2.67 2.59 2.51 2.44 2.37 2.31 2.26 2.21
          500 000
                    4.05 3.73 3.48 3.28 3.12 2.98 2.86 2.76 2.67 2.58 2.51 2.45 2.39 2.33 2.28
          600 000
                    4.14 3.82 3.57 3.36 3.20 3.05 2.93 2.83 2.73 2.65 2.58 2.51 2.45 2.39 2.34
          700 000
                   4.23 3.90 3.64 3.44 3.27 3.12 3.00 2.89 2.80 2.71 2.63 2.57 2.50 2.44 2.39
          800 000
                    4.31 3.97 3.71 3.51 3.33 3.18 3.06 2.95 2.85 2.76 2.69 2.62 2.55 2.49 2.44
          900 000
                   4.38 4.04 3.78 3.57 3.39 3.24 3.11 3.00 2.90 2.81 2.73 2.66 2.60 2.54 2.48
        1 000 000
                    4.65 4.30 4.03 3.81 3.62 3.46 3.33 3.21 3.10 3.01 2.92 2.85 2.78 2.71 2.65
        1 500 000
                    4.85 4.50 4.21 3.99 3.79 3.63 3.49 3.36 3.25 3.16 3.07 2.99 2.91 2.85 2.78
       2 000 000
                   5.01 4.65 4.36 4.13 3.93 3.76 3.62 3.49 3.38 3.27 3.18 3.10 3.02 2.95 2.89
       2 500 000
                   5.14 4.77 4.48 4.25 4.05 3.88 3.73 3.60/3.48 3.37 3.28 3.19 3.12 3.04 2.98
 3 . 3 3 000 000
                   5.25 4.88 4.59 4.35 4.14 3.97 3.82 3.69 3.57 3.46 3.36 3.28 3.20 3.12 3.06
                   5.35 4.98 4.68 4.44 4.23 4.06 3.90 3.77 3.65 3.54 3.44 3.35 3.27 3.19 3.12
        4 000 000
                   5.44 5.06 4.76 4.52 4.31 4.13 3.98 3.84 3.72 3.61 3.51 3.42 3.33 3.26 3.19
       4 500 000
                   5.52 5.14 4.83 4.59 4.38 4.20 4.04 3.90 3.78 3.67 3.57 3.47 3.39 3.31 3.24
       5 000 000
                   5.66 5.27 4.96 4.71 4.50 4.32 4.16 4.02 3.89 3.78 3.67 3.58 3.49 3.41 3.34
       6 000 000
                   5.78 5.38 5.07 4.82 4.61 4.42 4.26 4.12 3.99 3.87 3.77 3.67 3.58 3.50 3.43
                  5.88 5.48 5.17 4.91 4.70 4.51 4.35 4.20 4.07 3.95 3.85 3.75 3.66 3.58 3.50

5.97 5.57 5.26 5.00 4.78 4.59 4.43 4.28 4.15 4.03 3.92 3.82 3.73 3.65 3.57

6.06 5.65 5.33 5.07 4.85 4.66 4.50 4.35 4.22 4.10 3.99 3.89 3.79 3.71 3.63

6.39 5.97 5.64 5.37 5.14 4.95 4.77 4.62 4.48 1.36 4.25 4.14 4.05 3.96 3.88

6.63 6.20 5.86 5.59 5.35 5.15 4.98 4.82 4.68 4.55 4.44 4.33 4.23 4.14 4.06
       7 000 000
       8 000 000
       9 000 000
      10 000 000
11.7
      15 000 000
      20 000 000
                   6.82 6.38 6.04 5.76 5.52 5.32 5.14 4.98 4.84 4.71 4.59 4.48 4.38 4.29 4.20
      25 000 000
                   6.98 6.53 6.18 5.90 5.66 5.45 5.27 5.11 4.96 4.83 4.71 4.60 4.50 4.41 4.32
      30 000 000
                   7.12 6.66 6.31 6.02 5.78 5.57 5.38 5.22 5.07 4.94 4.82 4.71 4.61 4.51 4.42
      35 000 000
                   7.24 6.78 6.42 6.13 5.88 5.67 5.48 5.32 5.17 5.04 4.91 4.80 4.70 4.60 4.51
      40 000 000
                   7.34 6.88 6.52 6.22 5.97 5.76 5.57 5.41 5.26 5.12 5.00 4.88 4.78 4.68 4.59
      45 000 000
                   7.44 6.97 6.61 6.31 6.06 5.84 5.65 5.49 5.34 5.20 5.07 4.96 4.85 4.76 4.66
      50 000 000
                   7.61 7.13 6.76 6.46 6.21 5.99 5.79 5.62 5.47 5.33 5.21 5.09 4.98 4.88 4.79
      60 000 000
                   7.76 7.27 6.90 6.59 6.33 6.11 5.91 5.74 5.59 5.45 5.32 5.20 5.09 4.99 4.90
      70 000 000
                   7.88 7.40 7.01 6.70 6.44 6.22 6.02 5.85 5.69 5.55 5.42 5.30 5.19 5.09 4.99
      80 000 000
      90 000 000 8.00 7.51 7.12 6.80 6.54 6.31 6.11 5.94 5.78 5 64 5.51 5.39 5.28 5.17 5.08
     100 000 000 8.10 7.60 7.21 6.90 6.63 6.40 6.20 6.02 5.86 5 72 5.59 5.47 5.35 5.25 5.15
```

TABLE A. 7A

3.70 REQUIRED STRUCTURAL NUMBER 95% RELIABILITY (%R)

RESILIENT MODULUS (Mg) RANGE 4000 PST TO 18000 PSI

RESILIENT MODULUS (Mg) , (PSI \$ 1000) 12 13 10 11 5 ESAL 3.22 2.95 2.75 2.59 2.46 2.35 2.26 2.18 2.10 2.04 1.98 1.93 1.88 1.83 1.79 100 000 3.44 3.16 2.94 2.77 2.63 2.52 2.42 2.3 2.25 2.18 2.12 2.06 2.01 1.97 1.92 3.60 3.31 3.09 2.91 2.76 2.64 2.54 2.44 2.36 2.29 2.23 2.17 2.11 2.06 2.02 3.74 3.43 3.20 3.02 2.87 2.74 2.63 2.54 2.45 2.38 2.31 2.25 2.19 2.14 2.10 3.85 3.54 3.30 3.11 2.96 2.83 2.71 2.51 2.53 2.45 2.38 2.32 2.26 2.21 2.16 250 000 300 000 3.94 3.63 3.39 3.19 3.03 2.90 2.78 2.58 2.59 2.52 2.44 2.38 2.32 2.27 2.22 4.03 3.71 3.46 3.26 3.10 2.96 2.85 2.74 2.65 2.57 2.50 2.43 2.37 2.32 2.27 4.10 3.78 3.53 3.33 3.16 3.02 2.90 2.80 2.70 2.62 2.55 2.48 2.42 2.36 2.31 350 000 400 000 450 000 4.17 3.84 3.59 3.39 3.22 3.07 2.95 2.85 2.75 2.67 2.59 2.53 2.46 2.41 2.35 4.29 3.96 3.70 3.49 3.32 3.17 3.04 2.93 2.84 2.75 2.67 2.60 2.54 2.48 2.43 500 000 600 000 4.39 4.05 3.79 3.58 3.40 3.25 3.12 3.01 2.91 2.82 2.74 2.67 2.61 2.55 2.49 4.48 4.14 3.87 3.66 3.48 3.32 3.19 3.08 2.98 2.89 2.80 2.73 2.66 2.60 2.55 4.56 4.22 3.95 3.73 3.54 3.39 3.25 3.14 3.03 2.94 2.86 2.78 2.72 2.65 2.60 800 000 4.63 4.28 4.01 3.79 3.60 3.45 3.31 3.19 3.09 2.99 2.91 2.83 2.76 2.70 2.64 4.91 4.56 4.27 4.04 3.85 3.68 3.54 3.41 3.30 3.20 3.11 3.03 2.96 2.89 2.83 900 000 1 000 000 1 500 000 5.12 4.75 4.46 4.23 4.03 3.86 3.71 3.58 3.46 3.36 3.26 3.18 3.10 3.03 2.96 5.28 4.91 4.62 4.37 4.17 4.00 3.84 3.71 3.59 3.48 3.39 3.30 3.22 3.14 3.08 2 000 000 5.42 5.04 4.74 4.50 4.29 4.11 3.96 3.82 3.70 3.59 3.49 3.40 3.32 3.24 3.17 2 500 000 5.53 5.15 4.85 4.60 4.39 4.21 4.05 3.92 3.79 3.68 3.58 3.49 3.40 3.32 3.25 3 000 000

5.64 5.25 4.94 4.69 4.48 4.30 4.14 4.00 3.87 3.76 3.66 3.56 3.48 3.40 3.32 3 500 000 4 000 000 5.73 5.33 5.03 4.77 4.56 4.38 4.22 4.07 3.95 3.83 3.73 3.63 3.54 3.46 3.39 4 500 000 5.81 5.41 5.10 4.85 4.63 4.45 4.28 4.14 4.01 3.90 3.79 3.69 3.61 3.52 3.45 5.95 5.55 5.24 4.98 4.76 4.57 4.41 4.26 4.13 4.01 3.90 3.80 3.71 3.63 3.55 6.07 5.67 5.35 5.09 4.87 4.68 4.51 4.36 4.23 4.11 4.00 3.90 3.81 3.72 3.64 6 000 000 7 000 000 6.18 5.77 5.45 5.18 4.96 4.77 4.60 4.45 4.32 4.19 4.08 3.98 3.89 3.80 3.72 8 000 000

6.28 5.86 5.54 5.27 5.05 4.85 4.68 4.53 4.39 4.27 4.16 4.06 3.96 3.87 3.79 5-96 6.36 5.95 5.62 5.35 5.12 4.93 4.75 4.60 4.46 4.34 4.23 4.12 4.03 3.94 3.86 3.97 6.70 6.27 5.93 5.65 5.42 5.22 5.04 4.88 4.74 4.61 4.50 4.39 4.29 4.20 4.11 9 000 000 10 000 000 6.95 6.51 6.16 5.88 5.64 5.43 5.25 5.09 4.94 4.81 4.69 4.58 4.48 4.39 4.30 15 000 000 7.15 6.70 6.34 6.05 5.81 5.60 5.41 5.25 5.10 4.97 4.85 4.74 4.63 4.54 4.45 20 000 000 25 000 000 7.32 6.86 6.49 6.20 5.95 5.74 5.55 5.39 5.24 5.10 4.98 4.86 4.76 4.66 4.57

30 000 000 7.46 6.99 6.62 6.33 6.07 5.86 5.67 5.50 5.35 5.21 5.09 4.97 4.87 4.77 4.68 35 000 000 7.58 7.11 6.74 6.44 6.18 5.96 5.77 5.60 5.45 5.31 5.19 5.07 4.96 4.86 4.77 40 000 000 7.69 7.21 6.84 6.53 6.28 6.06 5.86 5.69 5.54 5.40 5.27 5.15 5.05 4.95 4.85

45 000 000 7.79 7.31 6.93 6.62 6.36 6.14 5.95 5.77 5.62 5.48 5.35 5.23 5.12 5.02 4.93 50 000 000 7.97 7.48 7.09 6.78 6.52 6.29 6.09 5.92 5.76 5.62 5.49 5.37 5.26 5.15 5.06 60-000-000

8.12 7.62 7.23 6.91 6.65 6.42 6.22 6.04 5.88 5.73 5.60 5.48 5.37 5.27 5.17 70 000 000 8.26 7.75 7.35 7.03 6.76 6.53 6.32 6.14 5.98 5.84 5.70 5.58 5.47 5.36 5.27 90 000 000 8.38 7.86 7.46 7.14 6.86 6.63 6.42 6.24 6.08 5.93 5.80 5.67 5.56 5.45 5.35

100 000 000 8.48 7.96 7.56 7.23 6.95 6.72 6.51 6.33 6.16 6.01 5.88 5.75 5.64 5.53 5.43

Sheet: ______ Date: 11/30/00

Life Cycle Cost Calculations

- 1. Assumptions
- 2. Overlay Existing Pavement Costs
- 3. Overlay New Costs
- 4. Overbuild Calculations
- 5. 2006 Overlay Cost Calculation

Life Cycle Cost (LCC) General Assumptions

All Alternatives

- Discount rate is the difference between the market interest rate and the construction inflation rate, and is assumed to be 4% for all calculations.
- Guardrail replacement cost is \$11 LF, based on PBS&J cost estimation found in different section of the report. The total replacement cost is (11x2x5280)= \$116,000.
- Asphalt concrete price is \$38/ton.
- No user costs are considered in the alternatives. These would normally include traffic delay costs, vehicle operating costs, accident costs, and discomfort costs.
- Costs for traffic control are not included.
- No salvage value is assumed.
- Striping/Pavement marking is included in these costs.
- 50-year design/rehabilitation life.

LCC- Overlay Existing

Alternatives: Existing Facility Improved, Alt. 1, Alt. 2 Without Water Quality Treatment

Assumptions for this alternative:

- Assume that guardrail will be replaced in 30 years. Using the replacement cost developed above, the present worth of the guardrail replacement cost is \$36,000.
 This cost was rolled up into other rehabilitation costs and was not considered further, because it is small.
- · Mainline pavement details:

12' wide

Mill ¾" F.C and 2 ½" Structural Course= 3 ¼" Total Milling Replace ¾" F.C and 2 ½" Structural Course= 3 ¼" Total Replacement Therefore, there will be no elevation change.

Shoulder pavement details:

8' wide each side Mill 1" Structural Course Replace 1" Structural Course Therefore, there will be no elevation change.

- Overbuild required to restore cross-slope because of settlement. Assume 25% of roadway area requires overbuild during each resurfacing. Extent of overbuild is from 0" at the centerline to 1 ½" 12' from the centerline. This amounts to an additional 1525 tons of asphalt concrete surface course per overlay cycle.
- See spreadsheets for costs for differing overlay intervals, however an <u>overlay</u> interval of 7 years is assumed based on the life and performance of the overlay from 1993 to the present.
- Square Yard cost per maintenance treatment is \$21.25. Total life cycle cost is \$54.32 for a 7 year cycle (6 treatments).

LCC- Overlay New

Alternatives: Alt. 2 With Water Quality Treatment (2, 2C,2D), Alt. 3 With AND Without Water, Quality Treatment, Alt. 4 With AND Without Water Quality Treatment

Assumptions for this alternative:

- Costs of guardrail replacement are rolled into other costs and treated the same as the guardrail was treated for the overlay option.
- Mainline:

12' wide

Mill ¾" F.C and 2 ½" Structural Course= 3 ¼" Total Milling Replace ¾" F.C and 2 ½" Structural Course= 3 ¼" Total Replacement Therefore, there will be no elevation change.

Shoulder:

5' wide each side Mill 1" Structural Course Replace 1" Structural Course

- See spreadsheets for costs for differing overlay intervals, however an <u>overlay</u> interval of 12 years is assumed based on the life and performance new construction (with no muck) around the state is typically about 14 years. To account for any impacts due to being surrounded by swamp, the life is reduced to 12 years.
- Square Yard cost per maintenance treatment is \$15.83. Total life cycle cost is \$19.92 for a 12-year cycle (3 treatments).

Tamiami Trail Aternates Study

Job. No:

11032.05

Sheet No.:

Date: **12/18/2000** p. By: **MCJ**

Comp. By: Chk By:

Subject:

Alternatives:

LC Cost Calculations: Overlay Existing

Existing Facility Improved

Alt. 2 Without Water Quality Treatment

Mill 3 1/4" & Add Level Wedge, 2-1/2" Asphalt + 3/4" Friction Course Per 1 Mile (2 Lanes)

ESTIMATED PROBABLE CONSTRUCTION COST

ITEM NO.	ITEM DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	TOTAL COST
327-70-6	MILLING EXISTING ASPHALT PAVEMENT (3" AVG.)	14,080	SY	\$1.10	\$15,488.00
331- 72- 10	TYPE S ASPHALTIC CONCRETE (2-1/2")	14,080	SY	\$4.25	\$59,840.00
	TYPE S ASPHALTIC CONCRETE (Overbuild)	1,525	TON	\$38.00	\$57,950.00
337- 7- 2	ASPH. CONC. FRICTION COURSE (5/8") (FC-5) (RUBBER) (GRAI	15,254	SY	\$1.65	\$25,169.10
300- 1- 3	BITUMINOUS MATERIAL (TACK COAT)	1,408	GA	\$1.00	\$1,408.00
546- 72- 51	RUMBLE STRIP (GROUND-IN) (16" MIN. WIDTH)	2	PM	\$1,000.00	\$2,000.00
706- 1-12	REFLECTIVE PAVEMENT MARKERS (CLASS B)	132	EA	\$3.60	\$475.20
706- 2	REMOVAL OF EXISTING PAVEMENT MARKERS	132	EA	\$0.65	\$85.80
710-21	SKIP TRAFFIC STRIPE (W/B)	1	GM	\$255.00	\$255.00
710-25-61	SOLID TRAFFIC STRIPE (W/B) (SOLID) (6")	5,280	LF	\$0.20	\$1,056.00
710-26-61	SOLID TRAFFIC STRIPE (Y) (SOLID) (6")	5,280	LF	\$0.20	\$1,056.00
711-31- 9P	TRAFFIC STRIPE SKIP (PPRT) (9" B/W CONTRAST) (10'-30')	1	GM	\$6,000.00	\$6,000.00
711-37-61P	TRAFFIC STRIPE SOLID (PPRT) (6* WHITE)	1	NM	\$14,000.00	\$14,000.00
711- 38- 61P	TRAFFIC STRIPE SOLID (PPRT) (6" YELLOW)	1	NM	\$14,000.00	\$14,000.00
Shoulder, 8' wide					
327-70-6	MILLING EXISTING ASPHALT PAVEMENT (1" AVG.)	11,147	SY	\$0.75	\$8,360.00
331- 72- 10	TYPE S ASPHALTIC CONCRETE (1")	11,147	SY	\$1.80	\$20,064.00

SUB-TOTAL		\$227,207.10
EROSION CONTROL (1%)		\$2,272.07
SUB-TOTAL		\$229,479.17
MAINTENANCE OF TRAFFIC (5%)		\$11,473.96
SUB-TOTAL		\$240,953.13
MOBILIZATION (8%)		\$19,276.25
SUB-TOTAL	-	\$260,229.38
CONTINGENCY (15%)		\$39,034.41
TOTAL		\$299,263.79

TOTALS:

\$149,631.89 Per Lane Mile \$2.36 Per Sq. Foot

\$21.25 Per Sq. Yard

Tamiami Trail Aternates Study

Job. No: 11032.05

Sheet No .: Date: ######

Comp. By: MCJ

Chk By:

Subject: LC Cost Calculations: Overlay Existing

Alternatives:

Existing Facility Improved

Alt. 2 Without Water Quality Treatment

Note: Figures shown are for SY

Disc. Rate 0.04

10 Year Resurfacing Cycle

Year	Cost	Eactor	PW Cost
0		1.00	\$0.00
10	\$21.25	0.68	\$14.36
20	\$21.25	0.46	\$9.70
30	\$21.25	0.31	\$6.55
40	\$21.25	0.21	\$4.43

\$35.04 Sum

8 Year Resurfacing Cycle

Year	Cost	Factor	PW Cost
0		1.00	\$0.00
8	\$21.25	0.73	\$15.53
16	\$21.25	0.53	\$11.35
24	\$21.25	0.39	\$8.29
32	\$21.25	0.29	\$6.06
40	\$21.25	0.21	\$4.43

Sum \$45.66

	Resurfacing		2.00
Year	Cost	Factor	PW Cost
0		1.00	\$0.00
7	\$21.25	0.76	\$16.15
14	\$21.25	0.58	\$12.27
21	\$21.25	0.44	\$9.33
28	\$21.25	0.33	\$7.09
35	\$21.25	0.25	\$5.39
42	\$21.25	0.19	\$4.09
		Sum	\$54.32

6 Year Resurfacing Cycle

Year	Cost	Factor	PW Cost
0		1.00	\$0.00
6	\$21.25	0.79	\$16.80
12	\$21.25	0.62	\$13.28
18	\$21.25	0.49	\$10.49
24	\$21.25	0.39	\$8.29
30	\$21.25	0.31	\$6.55
36	\$21.25	0.24	\$5.18
42	\$21.25	0.19	\$4.09
		Sum	\$64.68

Tamiami Trail Atemates Study

Job. No:

11032.05

Sheet No.:

Date: 12/18/2000

Comp. By: Chk By: MCJ

Subject:

LC Cost Calculations: New then OL

Alternatives:

Alt. 2 With Water Quality Treatment

Alt. 2 With Water Quality Treatment Alt. 3 With AND Without Water Quality Treatment

Alt. 4 With AND Without Water Quality Treatment

Mill 3 1/4" & 2-1/2" Asphalt + 3/4" Friction Course Per 1 Mile (2 Lanes)

ESTIMATED PROBABLE CONSTRUCTION COST

ITEM NO.	ITEM DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	TOTAL COST
327-70-6	MILLING EXISTING ASPHALT PAVEMENT (3" AVG.)	14,080	SY	\$1.10	\$15,488.00
331- 72- 10	TYPE S ASPHALTIC CONCRETE (2-1/2")	14,080	SY	\$4.25	\$59,840.00
337- 7- 2	ASPH. CONC. FRICTION COURSE (3/4") (FC-5) (RUBBER) (GRAN.)	15,254	SY	\$1.65	\$25,169.10
300- 1- 3	BITUMINOUS MATERIAL (TACK COAT)	1,408	GA	\$1.00	\$1,408.00
546- 72- 51	RUMBLE STRIP (GROUND-IN) (16" MIN. WIDTH)	2	PM	\$1,000.00	\$2,000.00
706- 1-12	REFLECTIVE PAVEMENT MARKERS (CLASS B)	132	EA	\$3.60	\$475.20
706- 2	REMOVAL OF EXISTING PAVEMENT MARKERS	132	EA	\$0.65	\$85.80
710- 21	SKIP TRAFFIC STRIPE (W/B)	1	GM	\$255.00	\$255.00
710- 25- 61	SOLID TRAFFIC STRIPE (W/B) (SOLID) (6*)	5,280	LF	\$0.20	\$1,056.00
710- 26- 61	SOLID TRAFFIC STRIPE (Y) (SOLID) (6")	5,280	LF	\$0.20	\$1,056.00
711-31- 9P	TRAFFIC STRIPE SKIP (PPRT) (9" B/W CONTRAST) (10'-30')	1	GM	\$6,000.00	\$6,000.00
711-37-61P	TRAFFIC STRIPE SOLID (PPRT) (6" WHITE)	1	NM	\$14,000.00	\$14,000.00
711-38-61P	TRAFFIC STRIPE SOLID (PPRT) (6" YELLOW)	1	NM	\$14,000.00	\$14,000.00
Shoulder, 5' wide					
327-70-6	MILLING EXISTING ASPHALT PAVEMENT (1" AVG.)	11,147	SY	\$0.75	\$8,360.00
331- 72- 10	TYPE S ASPHALTIC CONCRETE (1")	11,147	SY	\$1.80	\$20,064.00

SUB-TOTAL	\$169,257.10
EROSION CONTROL (1%)	\$1,692.57
SUB-TOTAL	\$170,949.67
MAINTENANCE OF TRAFFIC (5%)	\$8,547.48
SUB-TOTAL	\$179,497.15
MOBILIZATION (8%)	\$14,359.77
SUB-TOTAL	\$193,856.93
CONTINGENCY (15%)	\$29,078.54
TOTAL	\$222,935.47

TOTALS:

\$111,467.73 Per Lane Mile

\$1.76 Per Sq. Foot \$15.83 Per Sq. Yard

Tamiami Trail Aternates Study

Job. No: 11032.05

Chk By:

Sheet No.: 12/18/2000 Comp. By: MCJ

Subject:

LC Cost Calculations: New then OL (Opt. 2N, 3N, 3T, 4N, 4T)

Alternatives:

Alt. 2 With Water Quality Treatment (2, 2C,2D) Alt. 3 With AND Without Water Quality Treatment Alt. 4 With AND Without Water Quality Treatment

Note: Figures shown are for SY

0.04

Disc. Rate

12 Year	Resurfacing	g Cycle	
Year	Cost	Factor	PW Cost
0		1.00	\$0.00
12	\$15.83	0.62	\$9.89
24	\$15.83	0.39	\$6.18
36	\$15.83	0.24	\$3.86
		Sum	\$19.92

10 Year Resurfacing Cycle

Year	Cost	Factor	PW Cost
0		1.00	\$0.00
10	\$15.83	0.68	\$10.70
20	\$15.83	0.46	\$7.23
30	\$15.83	0.31	\$4.88
40	\$15.83	0.21	\$3.30

Sum \$26.10

8 Year Resurfacing Cycle

Year	Cost	Factor	PW Cost
0		1.00	\$0.00
8	\$15.83	0.73	\$11.57
16	\$15.83	0.53	\$8.45
24	\$15.83	0.39	\$6.18
32	\$15.83	0.29	\$4.51
40	\$15.83	0.21	\$3.30

\$34.01 Sum

\$48.18

6 Year Resurfacing Cycle

Year	Cost	Factor	PW Cost
0		1.00	\$0.00
6	\$15.83	0.79	\$12.51
12	\$15.83	0.62	\$9.89
18	\$15.83	0.49	\$7.82
24	\$15.83	0.39	\$6.18
30	\$15.83	0.31	\$4.88
36	\$15.83	0.24	\$3.86
42	\$15.83	0.19	\$3.05

Sum

SUBJECT: LCC - OVERBUILD CALES

COMP. BY:mcf
CHK. BY:
DATE: 9/25/00
SHEET NO:
JOB NO:

ALEA OF OVERBUILD FOR "OVERLAY EXISTING"

PBS

	St	()		
UBJECT:	2006	Estimate	-	11

SHEET NO:______
JOB NO:_____

2006 Salimute

Shidr: MI 1.0", and " Street. = 3.00/54.

Mail. 164510 x 13.75 = Z. 3 Million Shlars 113812 x 3 = 0.34 Million (Z.6 Million

Appendix C-5 - Pavement Core Data

TAMIAMI TRAIL ALTERNATIVES STUDY PAVEMENT CORES DATA SHEET

LAW PROJECT NO. 40700-0-2369

Core Number	Pavement Courses	Description of Cracks
DCB-5	1/2 inch wearing course	Vertical crack full depth
	2 1/2 inch Structural	Vertical crack full depth
	3-inch Structural	Vertical crack full depth
DCB-20	1/2 inch wearing course	No Cracking
	5 inch Strucutral	No Cracking
CB-25	1/2 inch wearing course	No Cracking
a macan ere ou.	3 1/8 Structural	No Cracking
DCB-40	1/2 inch wearing course	No Cracking
	10 5/8 inch Structural	No Cracking
CB-60	3/8 inch Wearing Course	No Cracking
	7 1/8 inch Structural	No Cracking
DCB-65	2 inch Structural	No Cracking
CB-80	1/2 Wearing Course	No Cracking
	9 3/8 inch Structural	No Cracking
DCB-85	5/8 inch Wearing Course	No Cracking
608.000000	4 inch Structural	No Cracking
DCB-100	3/8 inch Wearing Course	No Cracking
	6 5/8 inch Structural	No Cracking
CB-106	1/2 inch Wearing course	No Cracking
	1 7/8 inch Structural	No Cracking

TAMIAMI TRAIL ALTERNATIVES STUDY PAVEMENT CORES DATA SHEET LAW PROJECT NO. 40700-0-2369

Core Number	Height(in)	Diameter(in)	Volume(ft^3)	Weight(lb)	Density(lb/ft^3)
DCB-5	5.788	6.672	0.117	16.241	138.81
DCB-20	5.594	5.667	0.082	10.965	133.72
CB-25	3.639	6.718	0.075	9.48	126.39
DCB-40	11.3	5.702	0.167	22.605	135.36
CB-60	7.491	5.714	0.111	14.872	133.98
DCB-65	1.945	6.683	0.039	5.207	133.51
CB-80	9.916	5.723	0.148	19.681	132.98
DCB-85	4.619	6.512	0.089	12.758	143.35
DCB-100 -	7.019	6.605	0.139	17.895	128.74
CB-106	3.336	6.575	0.066	9.069	137.41

PBS JECT: TAMIAMI TEST LAYOUT - REVISED

6 6/65 (008)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)
10 (000)

Dall for 182/06/ 640 MAN - AT+T CABLE SPT/DEILL ROAD O 10 ts:... L-25 MISE SHULDER

COEE/SPT AN ROADWAY TO 10

83

PBS,

BJECT: LEVER CORING LOCATIONS - TAMIAMI TRAIL

LEATION LANGMARK
10'5. F
T-5 -> SR90-11Z

R-25 - Kight e SR90-40

T-45 -> 288'E of 5890-68

R-65 - 40'W of SK40-47

T-85 - equial to Dell-85

R-105 - moss from 0x6 106

T= TOP (topol levee)
R= Road (lunal lext)

APPENDIX D STRUCTURES ANALYSIS

Appendix D-1 Unit Prices and Cost Summary

Appendix D-2 Alternatives 1 and 2

Appendix D-3 Alternatives 1 and 2 North Canal Detour

Appendix D-4 Alternatives 2C and 2D

Appendix D-5 Alternative 3

Appendix D-6 Alternative 5

Corps of Engineers, Jacksonville, Florida

Done by: M. LeComte

Checked by: C. Li

November 29, 2000

UNIT PRICES

t:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternatives-1,2,4\[Type A Bridges 1 and 4.xls]COST

Unit prices assumed for cost analysis:

SUPERSTRUCTURE ITEMS:	UNIT	UNIT
	CY	\$310
Concrete Point foreign Steel	lbs	\$0.45
Reinforcing Steel	SY	\$2.50
Bridge Floor Grooving		
Traffic Railing Barrier	Ft	\$35
Expansion Joints	Ft	\$84
Neoprene Bearing Pads	CF	\$425
AASHTO Beams	-	
Type II	Ft	\$54
Type III	Ft	\$67
Type IV	Ft	\$84
Type V	Ft	\$92
Type VI	Ft	\$110
FBT72	Ft	\$97
FBT78	Ft	\$110
Florida Double Tees		
FDT18	Ft	\$180
FDT24	Ft	\$215
FDT30	Ft	\$250
Precast Slab Units	CY	\$750
UBSTRUCTURE_ITEMS:		
Concrete	CY	\$415
Reinforcing Steel	lbs	\$0.4
Prestressed Piles (18" square)		
Piling, Driven & Furnished	Ft	\$33
Test Pile	Ft	\$160
Pile Splice	Each	\$110
Pile Hole Preformed	Each	\$200
Prestressed Piles (24" square)		4
Piling, Driven & Furnished	Ft	\$46
Test Pile	Ft	\$16
Pile Splice	Each	\$17
Pile Hole Preformed	Each	\$20
Drilled Shaft (36" diameter)	2	
Drilled Shaft	Ft	\$22
Test Load	Each	\$50,0
Temporary Casing	Ft	4.00,0
Core (Shaft Excavation)	Ft	
Casing, Steel (Splice included in shaft price)		
Excavation, Unclasified Shaft	Ft	
Drilled Shaft Sidewall Over Reaming	Ft	
Excavation, Unclasified Extra depth	Ft	
Steel Sheet Pile	SF	\$16
Mobilization (5% of Construction Cost		5%
Contingency (15% of Construction Cost)	,	15%

Tamiami Trail Modified Water Deliveries to Everglades National Park Project
Preparation of Engineering Appendix For GRR/SEIS
Corps of Engineers, Jacksonville, Florida

STRUCTURAL COST COMPARISON OF ALTERNATIVES

ASTRUCT/Design/Tamiami-Traif/design/cost analysis/(Detailed Summary ,xls]RESULT

RESULTS OF COST COMPARISON STUDY:

Description:	Alternatives 1,2 & 4 (Bridges 1 & 4)	Alternatives 1,2 & 4 (Bridges 2 & 3)	Alternative 5
Bridge Type:	Type A	Type B	Type H
Total bridge length:	475.00 Ft.	345.50 Ft.	59220.00 Ft.
Bridge Width:	43.08 Ft.	43.08 Ft.	43.08 Ft.
Optimum Span Arrangement:	11 spans at 43.18 FT.	8 spans at 43.19 FT.	555 spans at 106.70 FT.
fost economical superstructure type:	Type II	Туре П	Type V
Most economical substructure type:	18 Piles	18 Piles	DRILLED SHAFT
Total Construction Cost	\$632,347	\$470,880	\$80,516,220
Deck Square Footage	20,465 sf	14,885 sf	2.551,375 sf
Cost Per Square Foot	\$30.90/sf	\$31.63/sf	\$31.56/sf

Alternative 3 (Bridges 5 & 6)	Type G	1200.00 Ft.	43.08 Ft.	13 spans at 92.31 FT.	Type V	24 IN, PILES	\$1,642,172	51,700 sf	\$31.76/sf
Alternative 3 (Bridge 4)	Type F	168.50 Ft.	35.08 Ft.	4 spans at 42.13 FT.	Type II	18 Piles	\$234,453	5,912 sf	\$39.66/sf
Alternative 3 (Bridge 3)	Type E	194.00 Ft.	43,08 Ft.	3 spans at 64.67 FT.	Type III	18 Piles	\$293,571	8,358 sf	\$35.12/sf
Alternative 3 (Bridges 2 & 7)	Type D	248.50 Ft.	43.08 Ft.	6 spans at 41.42 FT.	Туре П	18 Piles	\$358,412	10,706 sf	\$33.48/sf
Alternative 3 (Bridges 1 & 8)	Type C	1214.00 Ft.	43.08 Ft.	12 spans at 101.17 FT.	Type V	DRILLED SHAFT	\$1,868,922	52,303 sf	\$35.73/sf
Description	Bridge Type:	Total bridge length:	Bridge Width:	Optimum Span Arrangement:	Most economical superstructure type:	Most economical substructure type:	Total Construction Cost	Deck Square Footage	Cost Per Square Foot

Description:	Alternative 2C	Alternative 2D	Alternative 1 & 2 (North Detour)
Additional Construction Cost	\$39,341,403	\$57,707,396	\$52,577,456

Alternatives	Total Construction Cost of Structures
Alternative 1	\$2,206,454
Alternative 2	\$2,206,454
Alternative 2C	\$41,547,856
Alternative 2D	\$59,913,849
Alternative 1 (North Detour)	\$52,577,456
Alternative 2 (North Detour)	\$52,577,456
Alternative 3	\$8,267,036
Alternative 4	\$2,206,454
Alternative 5	\$80,516,220

Corps of Engineers, Jacksonville, Florida

Done by: M. LeComte

Alternatives 1, 2 & 4 (Bridges 1

BRIDGE AND SPAN LENGTHS

Checked by: C. Li

:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternatives-1,2,4\[Type A Bridges 1 and 4.xls|COST

November 29, 2000

Determine Bridge Length based on hydraulic opening:

Hydraulic Opening Width at Natural Ground Level 425.00 Ft.

> Natural Ground Elevation 5.00 Ft.

Control Water Elevation 7.50 Ft.

Minimum Clearance over Control Water Elevation 6.00 Ft.

> Berm Width 3.00 Ft.

Vertical Distance from bottom of beams to top of Berm where slope starts

Distance From FFBW to Front Edge of End Bent Cap

Minimum Span length

2.00 Ft. 28.00 Ft.

2.25 Ft.

Preliminary Bridge Length (No adjustment due to pile/drilled shaft in the opening), L' = 460.00 Ft.

Number of	ADJUS	TED BRIDGE LI	ADJUSTED SPAN LENGTH				
Spans	18 in. Pile	24 in. Pile 36 in. Drilled Sh		18 in. Pile	24 in. Pile	36 in. Drilled Shat	
5	466.00 Ft.	468.00 Ft.	472.00 Ft.	93.20 Ft.	93.60 Ft.	94.40 Ft.	
6	467.50 Ft.	470.00 Ft.	475.00 Ft.	77.92 Ft.	78.33 Ft.	79.17 Ft.	
7	469.00 Ft.	472.00 Ft.	478.00 Ft.	67.00 Ft.	67.43 Ft.	68.29 Ft.	
8	470.50 Ft.	474.00 Ft.	481.00 Ft.	58.81 Ft.	59.25 Ft.	60.13 Ft.	
9	472.00 Ft.	476.00 Ft.	484.00 Ft.	52.44 Ft.	52.89 Ft.	53.78 Ft.	
10	473.50 Ft.	478.00 Ft.	487.00 Ft.	47.35 Ft.	47.80 Ft.	48.70 Ft.	
11	475.00 Ft.	480.00 Ft.	490.00 Ft.	43.18 Ft.	43.64 Ft.	44.55 Ft.	
12	476.50 Ft.	482.00 Ft.	493.00 Ft.	39.71 Ft.	40.17 Ft.	41.08 Ft.	
13	478.00 Ft.	484.00 Ft.	496.00 Ft.	36.77 Ft.	37.23 Ft.	38.15 Ft.	
14	479.50 Ft.	486.00 Ft.	499,00 Ft.	34.25 Ft.	34.71 Ft.	35.64 Ft.	
15	481.00 Ft.	488,00 Ft.	502.00 Ft.	32.07 Ft.	32,53 Ft.	33.47 Ft.	
16	482.50 Ft.	490.00 Ft.	505.00 Ft.	30.16 Ft.	30.63 Ft.	31.56 Ft.	
17	484.00 Ft.	492.00 Ft.	508.00 Ft.	28.47 Ft.	28.94 Ft.	29.88 Ft.	
18	485.50 Ft.	494.00 Ft.	511.00 Ft.			28.39 Ft.	

Corps of Engineers, Jacksonville, Florida

Done by: M. LeComte

Alternatives 1, 2 & 4 (Bridges 1 & 4)

BEAM SPACING vs. DESIGN SPAN

Checked by: C. Li

1:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternatives-1,2,4\[Type A Bridges 1 and 4.xls]COST

November 29, 2000

Determine beam spacing and design span:

Bridge Width: 43.08 Ft. Slab Thickness: 8.50 in.

Number	¹ Beam			² Design Sp	an		
of Beams	Spacing	AASHTO Type II	AASHTO Type III	AASHTO Type IV	18" Double T	24" Double T	30" Double T
4	10.77 Ft.	46.00 Ft.	65.00 Ft.	84.00 Ft.	CHARLES AND A		
5	8.62 Ft.	52.00 Ft.	73.00 Ft.	90.00 Ft.			
6	7.18 Ft.	58.00 Ft.	78.00 Ft.	96.00 Ft.	40.00 Ft.	50.00 Ft.	60.00 Ft.
7	6.15 Ft.	62.00 Ft.	82.00 Ft.	98.00 Ft.			
8	5.39 Ft.	66.00 Ft.	84.00 Ft.	102.00 Ft.			

Beam spacing is based on assuming the cantilever to be half of the beam spacing.

²Design spans are determined from the charts based on the beam spacing given.

Corps of Engineers, Jacksonville, Florida

Done by: M. LeComte

Done by: M. LeCom

Alternatives 1, 2 & 4 (Bridges 1 & 4)

AASHTO BEAMS COMPARISON

Checked by: C. Li

h:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternatives-1,2,4\[Type A Bridges 1 and 4.xls)\COST

November 29, 2000

Number	Adjusted Span Number of AASHTO Per Length Beams Required												
of	PILES		Drilled	Drilled 18* Pites				24" Piles			Drilled Shaft		
Spans	18 in.	24 in.	Shaft	11	111	IV	II	III	IV	II	III	IV	
5	93.20 Ft.	93.60 Ft.	94.40 Ft.			6			6			6	
6	77.92 Ft.	78.33 Ft.	79.17 Ft.		6	4		7	4		7	4	
7	67.00 Ft.	67.43 Ft.	68.29 Ft.	8	5	4	8	5	4		5	4	
8	58.81 Ft.	59.25 Ft.	60.13 Ft.	7	4	4	7	4	4	7	4	4	
9	52,44 Ft.	52.89 Ft.	53.78 Ft.	6	4	4	6	4	4	6	4	4	
10	47.35 Ft.	47.80 Ft.	48.70 Ft.	5	4	4	5	4	4	5	4	4	
11	43.18 Ft.	43.64 Ft.	44.55 Ft.	4	4	4	4	4	4	4	4	4	
12	39.71 Ft.	40.17 Ft.	41.08 Ft.	4	4	4	4	4	4	4	4	4	
13	36.77 Ft.	37.23 Ft.	38.15 Ft.	4	4	4	4	4	4	4	4	4	
14	34.25 Ft.	34.71 Ft.	35.64 Ft.	4	4	4	4	4	4	4	4	4	
15	32,07 Ft.	32.53 Ft.	33.47 Ft.	4	4	4	4	4	4	4	4	4	
16	30.16 Ft.	30.63 Ft.	31.56 Ft.	4	4	4	4	4	4	4	4	4	
17	28.47 Ft.	28.94 Ft.	29.88 Ft.	4	4	4	4	4	4	4	4	4	
18			28.39 Ft.					100		4	4	4	

Number					Constructi SHTO Bea				
of		18 in. Piles			24 in. Piles		DF	ULLED SH.	AFT
Spans	n	10	IV	II	III	IV	II	III	IV
5	N/A	N/A	\$234,864	N/A	N/A	\$235,872	N/A	N/A	\$237,888
6	N/A	S187,935	\$157,080	N/A	\$220,430	\$157,920	N/A	\$222,775	\$159,600
7	\$202,608	\$157,115	\$157,584	\$203,904	\$158,120	\$158,592	N/A	\$160,130	\$160,608
8	5177,849	\$126,094	\$158,088	\$179,172	\$127,032	\$159,264	\$181,818	\$128,908	\$161,616
9	\$152,928	\$126,496	\$158,592	\$154,224	\$127,568	\$159,936	\$156,816	\$129,712	\$162,624
10	\$127,845	\$126,898	\$159,096	\$129,060	\$128,104	\$160,608	\$131,490	\$130,516	\$163,632
11	\$102,600	\$127,300	\$159,600	\$103,680	\$128,640	\$161,280	\$105,840	\$131,320	\$164,640
12	\$102,924	\$127,702	\$160,104	\$104,112	\$129,176	\$161,952	\$106,488	\$132,124	\$165,648
13	\$103,248	\$128,104	\$160,608	S104,544	\$129,712	\$162,624	\$107,136	\$132,928	\$166,656
14	\$103,572	\$128,506	\$161,112	\$104,976	\$130,248	\$163,296	\$107,784	\$133,732	\$167,664
15	\$103,896	\$128,908	\$161,616	\$105,408	\$130,784	\$163,968	\$108,432	\$134,536	\$168,672
16	\$104,220	\$129,310	\$162,120	\$105,840	\$131,320	\$164,640	\$109,080	\$135,340	\$169,680
17	\$104,544	\$129,712	\$162,624	\$106,272	\$131,856	\$165,312	\$109,728	\$136,144	\$170,688
18	N/A	N/A	N/A	N/A	N/A	N/A	\$110,376	\$136,948	\$171,696

Number		Mos	t Economic Beam	cal AASHTO Type	9	
of	18"	PILES	24* 1	PILES	DRILLE	D SHAFT
Spans	TYPE	COST	TYPE	COST	TYPE	COST
5	IV	\$234,864	IV	\$235,872	IV	\$237,888
6	IV	\$157,080	IV	\$157,920	IV	\$159,600
7	III	\$157,115	Ш	\$158,120	Ш	\$160,130
8	111	\$126,094	III	\$127,032	III	\$128,908
9	ш	\$126,496	111	\$127,568	III	\$129,712
10	III	\$126,898	111	\$128,104	Ш	\$130,516
11	II	\$102,600	П	\$103,680	11	\$105,840
12	11	\$102,924	II	\$104,112	11	\$106,488
13	[]	\$103,248	11	\$104,544	II	\$107,136
14	11	\$103,572	II	S104,976	II	\$107,784
15	11	\$103,896	II	\$105,408	II	\$108,432
16	II	\$104,220	[]	\$105,840	[]	\$109,080
17	11	\$104,544	[]	\$106,272	IJ	\$109,728
18					[]	\$110,376

Corps of Engineers, Jacksonville, Florida

PBS,

Done by: M. LeComte

Alternatives 1, 2 & 4 (Bridges 1 & 4)

SUPERSTRUCTURE ALTERNATIVES COMPARISON

Checked by: C. Li

\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternatives-1,2,4\[Type A Bridges 1 and 4.xls]COST

November 29, 2000

Number		AASH	TO BEA	MS WITH	DECK			Flo	rida Doub	le Tee Bean	15	
of	183	PILES	24*	PILES	DRILL	ED SHAF	18" F	PILES	24"	PILES	DRILLE	D SHAF
Spans	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST
5	IV	\$446,732	IV	\$448,649	IV	\$452,484	N/A		N/A		N/A	
6	IV	\$369,630	IV	\$371,607	IV	\$375,560	N/A		N/A		N/A	
7	III	\$370,347	111	\$372,716	TII	\$377,454	***N/A	ACT 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N/A	material and the second	'N/A	
8	III	\$340,008	111	\$342,537	III	\$347,596	FDT30	\$705,750	FDT30	\$711,000	N/A	
9	III	\$341,092	111	\$343,982	III	\$349,764	FDT30	\$708,000	FDT30	\$714,000	FDT30	\$726,00
10	111	\$342,176	111	\$345,428	III	\$351,932	FDT24	\$610,815	FDT24	\$616,620	FDT24	\$628,23
11	II	\$318,560	11	\$321,913	II	\$328,620	FDT24	\$612,750	FDT24	\$619,200	FDT24	\$632,10
12	11	\$319,566	11	\$323,254	II	\$330,632	FDT18	\$514,620	FDT24	\$621,780	FDT24	\$635,97
13	11	\$320,572	11	S324,596	II	\$332,643	FDT18	\$516,240	FDT18	\$522,720	FDT18	\$535,68
14	11	\$321,578	11	\$325,937	II	\$334,655	FDT18	\$517,860	FDT18	\$524,880	FDT18	\$538,92
15	11	S322,584	- 11	\$327,278	11	\$336,667	FDT18	\$519,480	FDT18	\$527,040	FDT18	\$542,16
16	11	\$323,590	- 11	\$328,620	11	\$338,679	FDT18	\$521,100	FDT18	\$529,200	FDT18	\$545,40
17	- 11	\$324,596	11	\$329,961	11	\$340,691	FDT18	\$522,720	FDT18	\$531,360	FDT18	\$548,64
18					11	\$342,703					FDT18	\$551,88

Deck Reinforcement 205 lbs/CY concrete Cost of Deck per foot \$455/ft.

			PREC	AST SLAB				MOST	ECONOM	ICAL SUPI	ERSTRU	CTURE A	LTERNA'	TIVE	
Number	18	PILES	24'	PILES	DRILL	ED SHAF	arrea e e ê	18 in. Pil	c	2	4 in. Pil	e	36	in, Sl	aft
of	Thick-	Estimated	Thick-	Estimated	Thick-	Estimated	Number	Beam	Estimated	Number	Beam	Estimated	Number	Beam	Estimated
Spans	ness	Cost	ness	Cost	ness	Cost	of Beams	Type	Cost	of Beams	Type	Cost	of Beams	Type	Cost
5							6	IV	\$446,732	6	IV	\$448,649	6	IV	\$452,484
6							4	IV	\$369,630	4	IV	\$371,607	4	IV	\$375,560
7							5	III	\$370,347	5	III	\$372,716	5 .	111	\$377,454
8							4	111	\$340,008	4	III	\$342,537	4	III	\$347,596
9							4	111	\$341,092	4	III	\$343,982	4	III	\$349,764
10					n e		4	Ш	\$342,176	4	Ш	\$345,428	4	III	\$351,932
11							4	II	\$318,560	4	II	\$321,913	4	11	\$328,620
12	23	\$1,092,990					4	11	\$319,566	4	II	\$323,254	4	11	\$330,632
13	22	\$1,048,760	22	\$1,061,924	23	\$1,137,719	4	11	\$320,572	4	11	\$324,596	4	II	\$332,643
14	21	\$1,004,231	21	\$1,017,844	21	\$1,045,070	4	11	\$321,578	4	11	\$325,937	4	II	\$334,655
15	20	\$959,402	20	\$973,364	20	\$1,001,289	4	- 11	\$322,584	4	- 11	S327,278	4	II	\$336,667
16	19	\$914,274	19	\$928,486	19	\$956,909	4	11	\$323,590	4	11	\$328,620	4	11	\$338,679
17	18	\$868,847	18	\$883,208	19	\$962,593	4	11	\$324,596	4	II	\$329,961	4	11	\$340,691
18					18	\$917,316							4	11	\$342,703
								C = 1							

F	Tamiumi Trail Modified Water Deliverles to Everglades National Park Project Preparation of Engineering Appendix For GRR/NEIS Corps of Engineers, Jacksonville, Florida	Tater Delivering Engineering Fragineers	iffied Water Deliveries to Everglades Na ation of Engineering Appendix For GRR Corps of Engineers, Jacksonville, Florida	des National I GRR/NEIS Jorida	Park Project			Done by:	PBSJ Doug by: M. LeComin						
Alternatives 1, 2 & 4 (Bridges 1 & 4)	FOUNDATION LOADS and NUMBER of	LOADS an	d NUMBER	CONTRACTOR OF THE	18 in. PRESTRESSED PILES	SED PILE	S	Checked by: C. Li	C. Li						
INSTRUCTIVE SIGNATURE IN Trail design cost-embysis/alternatives-1.2.4.(Type A Reigne 1 and 4.ab)COST	sign/cost-emalysis/alternatives-1,2	L4 (Type A Brid	iges I and 4.xls]C	T50				No	November 29, 2000	000					
Bridge Width 43.08 Ft.	F.	ž	Number of lanes	3		Admin	Number of Florida Double Tee = 6	ouble Tee -	9	2000					
	Number of Spans	Sueds S	surds 9	7 spans	\$ spans	9 spans	10 spans	11 spans	12 spans	13 spans	14 spans	15 spans	16 spans	17 spans	
	Beam Type	Δ	≥	Ħ	Ħ	E	Ħ	=	п	Ħ	Ħ	=	=	=	
	Beam Weight (k/ft)	0.822 Mf	0.822 kdf	0.583 kIF	0.583 kIF	0.583 kIf	0.583 kif	0.384 kdf	0.384 kJf	0.384 kif	0.384 kIf	0.384 kJf	0.384 kJf	0.384 kJf	
	Number of Beams	6 beams	4 beams	5 hearns	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams	
	Span Length (ft)	93.20 Ft.	77.92 FL	67.00 FL	58.81 FL	52.44 Ft.	47.35 Ft.	43.18 FL	39.71 Ft.	36.77 Ft.	34,25 Ft.	32.07 Ft.	30,16 Ft.	28,47 Ft.	
	Beam Span (ft)	91.20 Ft.	75.92 Ft.	65.00 Ft.	56.81 Ft.	50,44 Ft.	45.35 R.	41.18 Ft	37.71 Ft.	34.77 R.	32.25 Pt.	30.07 IV.	28.16 Pt.	26.47 Pt.	
Br	Bridge Deck Thickness (iii)	8.50 in.	8.50 in.	8.50 in.	8.50 in.	8.50 in.	8.50 in.	8,50 in.	8.50 in.	8.50 in.	8.50 in.	8.50 in.	8 50 in.	8.00 in.	
	Comp. Loads (ksf)	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	
Ватіс	Barrier Loads (krft)(both sides)	0.836 kH	0.836 Mf	0.836 Mf	0.836 kdf	0.836 kH	0.836 kIF	0.836 kuf	0.836 Mf	0.836 kH	0.836 kH	0 836 kIF	0.836 kIF	0.836 kIf	
Dead Load															
	Beam Load (End Bent)	547.3 k	393.5 k	325.9 k	268.9 k	239.8 k	216.5 k	180.3 k	165.8 k	153.5 k	143.0 %	133.9 k	125.9 k	115.0 k	
	Beam Load (Pier)	1094.7 k	787.1 k	48.18b	537.9 k	479.6 k	433.0 k	360.6 k	331.5 k	307.0 %	286.0 k	267.7 k	231.8 k	230 1 K	
Live Load															
	Reduction factor	6.0													
Impa	Impact factor for Substructure	1.0										1-2			
T.I. Reaction per lane (END BENT)	ne (END BENT) Truck load	44.83	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4009	4909	59.7 k	57.83	\$6.4 k	31.85	53.7 k	52.4 k	51.0 k	49.7 K	48.4 k	
	Lane load	55.8 k	50.9 k	47,4 k	44.8 k	42.8 k	41.2 k	39.8 k	38.7 k	37.8 k	37.0 k	36.3 k	35.7 k	35.1 k	
Total Live Load (FND BENT)		174.9 k	171.1 k	167.3 k	163.5 k	159.8 k	156.1 k	152.4 k	148.7 k	145.1 k	141.4 k	137.8 k	134.2 k	130.7 k	
LL Reaction per lane (PIER)		1027	10.07	1919	2	12.5	4609	50.03	57.93	,5 00 90 10	1935	4515	47 65	52.3 k	
	Lanc load	85.6 k	75.9 k	68.9 k	63.6 k	59.6k	56.3 k	53.6 k	51.41	49.5 k	47.9 k	46.5 k	45.3 k	44.2 k	
Total Live Load (PIER)		231.2 k	204 8 k	186.0 k	171.8 k	165.6 k	162.5 k	159.4 k	156.3 k	153.3 k	150.3 k	147.2 k	144.3 k	141.3 k	
Total Load Supersmu	Superstructure Load (I:ND BENT)	898.4 k	740.8 k	669.3 k	608.6 k	575.7 k	548.7 k	508.8 k	490.6 k	474.7 k	460.5 k	447.8 k	436.2 k	421.8 k	
N.S.	Superstructure Load (PIER)	1384.1 k	1050.1 k	896.0 k	767.9 k	703.4 k	653,7 k	578.1 k	546.0 k	518.5 k	494.4 k	473.2 k	454.2 k	429.5 k	
Foundation												7.60 Y			
	Maximum pile spacing Service Load Canacity of Piles	13.0 Ft.													
Location of Ext. pile from	Location of Ext. pile from coping at End Bont Pier	4.0 Ft.	3	,	,	,			,	,		3	,	,	
Number of Piles Is Number of	Number of Piles Required For END BENT Number of Piles Required For PIFR	10	£ 00	0 5	0 0	+ 45	+ 10	, .	. 4	+ +	r =r	+ +	+ ++	+ +	
Service D	Service Design Load (FND BENT)	128 k	123 k	134 k	122 k	14k	137 k	127 k	123 K	119 k	115 k	112 k	109 k	105 k	
in Control	Service Design Load (FIER)	4 051	A 151	67	4	4	4	4 71	4						

String PRESTRESSED PILES Complete		Tamiami Trail Modified Water Deliveries to Everglades National Preparation of Engineering Appendix For GRR/SFIS Copps of Engineers, Jackonville, Horida	uter Deliveri Engineering f Engineers,	iffied Water Deliveries to Everglades Na ation of Engineering Appendix For GRR Copps of Engineers, Jacksonville, Florida	to Everglades National Park Project opendix For GRR/SEIS ksonville, Florida	ark Project			Done by:	PBSJ Doge by: M. LeCount					
Separation Comparison Com	Alternatives 1, 2 & 4 (Bridges 1 & 4)	FOUNDATION	OADS an	d NUMBER	of 24 in.	PRESTRES	SED PILE	S	Checked by:	0.15					
Number of Spans Sp	L'STRUCT\Design\Tamiami-Traif\	design/cost-analysis/alternatives-1.2	AUType A Brid	iges 1 and 4.xls)CC	150				No	rember 29, 20	80				
Number of Base Spans Spa															
Number of Spains Square	Beidge Width 43.0	08 Ft.	N	mber of lanes	3		Numbe	r of Florida D	11	9					
Number of Spans 5 spans 6 spans 7 rayers 8 spans 9 spans 10 spans 11 spans 11 spans 13 spans 6 spans 8 spans 6 spans 7 rayers 8 spans 9 spans 10 spans 11 spans 13 spans 6 spans 8 spans 6 spans 12 spans 12 spans 13 spa															
Ream Type N		Number of Spans	5 spans	e spans	7 spans	sunds §	9 spans	10 spans	11 spans	12 spans	13 spans	14 spans	15 spans	sueds 91	17 spars
Ready child (a) 0.523.14		Beam Type	Ν	2	Ħ	≡	Ξ	目	ш	=	=	=	=	=	=
Number of Ream Soft		Beam Weight (k/ft)	0.822 kif	0.822 Mf	0.583 kdf	0.583 kdf	0.583 Mf	0.583 Mf	0.384 MF	0.384 kIf	0.384 Mf	0.384 kdf	0.384 Mf	0.384 kdf	0.384 kH
Figure F		Number of Beams	6 beams	4 beams	5 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams
Resign Deck Thickness (m) S.50 in S.50 i		Span Length (ft)	93.60 Ft.	78.33 Ft.	67.43 Ft.	59.25 Pt.	\$2.89 Pt.	47.80 Ft.	43.64 Ft.	40.17 Ft.	37,23 Ft.	34.71 Ft.	32.53 Ft.	30.63 Ft.	28.94 Ft.
Redige Deck Thickness (m) S.50 in S.50 i		Beam Span (ft)	91.60 Ft.	76.33 Ft.	65.43 Ft.	57.25 Ft.	50.89 Ft.	45.80 Ft.	41.64 Ft.	38.17 Fc.	35.23 FL	32.71 Ft.	30.53 FL	28.63 Ft.	26.94 FL
		Bridge Deck Thickness (m)	8 50 in.	8.50 in	8.50 in.	8.50 iii	8.50 in.	8.50 in.	8.50 in.	8.50 in.	8.50 in.	8.50 in.	8.50 in.	8.50 in.	8.00 in.
		Comp. Loads (ksf)	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksF	0.035 kef	0.035 ksf	0.035 ksf
Realization float (Bail Basis) 549.7 k 791.5 k 656.0 k 219.0 k 211.0 k 457.2 k 182.2 k 167.7 k 155.4 k 141.0 k 155.8 k 141.0 k 125.8 k 141.0 k 135.4 k 135.4 k 135.8 k 1	Вап	rier Loads (k/ft)(both sides)	0.836 Mf	0.836 kH	0.836 kH	0.836 Mf	0.836 kdf	0.836 kdf	0.836 kdf	0.836 kIF	0.836 kif	0.836 kJf	, 0.836 kdf	0.836 kH	0.836 kJf
Roduction factor 109 4 k 791.3 k 656.0 k 511.9 k 437.7 k 437.2 k 167.7 k 155.4 k 1149.4 135.8 k 127.9	Dead Load														
Reduction from Fig. 1999 4		Beam Load (End Bent)	549.7 k	395.6 k	328.0 k	270.9 k	241.9 k	218.6 k	182.2 k	167.7 k	155,4 k	144.9 k	135.8 k	127.9 k	116.9 k
Robertion factor for Shiermount Continue to Shield Continue to Shi		Beam Load (Pier)	1099,4 k	791.3 k	656.0 k	541.9 k	483.7 k	437.2 k	364.3 k	335.4 k	310.9 k	289.9 k	271.6 k	255.7 k	233.9 k
Reaction per Line (EXD BENT)	Live Load														
Resertion per lane (FND BEXT) Truck load 6.0 k 51.1 k 47.6 k 45.0 k 42.9 k 41.3 k 40.0 k 55.3 k 57.0 k 57		Reduction factor	6.0												
Resertion per lane (EXD BEXT)	un	pact factor for Substructure	1.0												
Lace lead 56.0 k 51.1 k 47.6 k 45.0 k 41.3 k 40.0 k 38.9 k 37.9 k 37.1 k 35.4 k 35.8 k 37.8 k 37.8 k 35.8 k 37.8 k 37.8 k 35.8 k 37.8 k	LL Reaction per L	ane (END BENT) Truck load	64.8 k	63.4 k	62.0 k	60.7 k	59.3 k	57.9 k	56.6 k	55.3 k	54.0 k	52.6 k	51.3 k	50.1 k	48.8 k
The Load (END BENT) 13.0 k 171.0 k 107.5 k 163.8 k 160.1 k 156.4 k 152.8 k 149.2 k 145.7 k 142.1 k 138.6 k 135.2 k		Lane load	56.0 k	51.1 k	47.6 k	45.0 k	42.9 k	41.3 k	40.0 k	38.9 k	37.9 k	37.1 k	36.4 k	35.8 k	35.3 k
Truck load 66 0 k 64.9 k 63.7 k 62.5 k 61.4 k 60.3 k 59.2 k 53.0 k 55.9 k 55.9 k 55.7 k 53.7 k 53.7 k 53.7 k 53.7 k 53.9 k 53.7 k 53.7 k 53.9 k 53.7 k 53.7 k 53.9 k 53.7 k 53.7 k 53.9 k 53.9 k 53.7 k 53.7 k 53.8 k 56.6 k 53.9 k 53.7 k 53.0 k 53.9 k 53.0 k	Total Live Load (E.		175.0 k	171.2 k	167.5 k	163.8 k	160.1 k	156.4 k	152.8 k	149.2 k	145.7 k	142.1 k	138.6 k	135.2 k	131.7 k
The Load (PTR)	I.I. Reaction per h		40.99	46198	63.7 k	95.00	3 F 19	60.3 k	59.2 k	58.1 k	57.0 k	55.9 k	54.8 k	53.7 k	52.7 k
Superstructure Load (END RENT) 900.8 k 743.0 k 610.8 k 578.0 k 551.1 k 493.0 k 477.2 k 459.2 k 459.1 k 477.2 k 493.0 k 477.2 k 459.0 k 479.1 k 459.0 k 477.2 k 459.0 k 477.2 k 4		I ape load	85.9 k	76.1 k	69.2 k	63.9 k	59.8 k	56.6 k	53.9 k	51.7 k	49.8 k	48.2 k	+ 46.8 k	45.6 k	44.5 k
Superstructure Load (END BENT) 900 8 k 743.0 k 671.6 k 610.8 k 578.0 k 551.1 k 511.1 k 493.0 k 477.2 k 450.6 k 479.1 k Superstructure Load (PHIR) 1389.5 k 1065.0 k 900.9 k 772.6 k 707.7 k 658.1 k 582.3 k 550.3 k 498.9 k 477.7 k 458.9 k Aximum pile spacing 13 0 Fi. 56.0 k 772.6 k 707.7 k 658.1 k 582.3 k 550.3 k 550.3 k 477.7 k 458.9 k 477.7 k 458.9 k Number of Piles Required For PIER 6 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Total Live Load (P.		231.9 k	205.6 k	186.7 №	172.6 k	165.8 k	162.8 k	159.8 k	156.8 k	153.8 k	150.8 k	147.9 k	145.0 k	142,2 k
Supersynchraft and (PHIR) 1389.5 k 1055.0 k 900.9 k 772.6 k 707.7 k 658.1 k 582.3 k 552.8 k 498.9 k 477.7 k 458.9 k 477.7 k 477.7 k 458.9 k 477.7 k 477.		mente Load (END BENT)	38 006 8 k	743.0 k	671.6 k	610.8 k	578.0 k	551.1 k	511.1 k	493.0 k	477.2 k	463.2 k	. 450.6 k	439.1 k	424.7 k
Maximum pile spacing 13 0 Pt. Service Load Capacity of Piles 260.0 k Number of Piles Required For END BENT 4 8		Superstructure Load (PHIR)	1389.5 k	1055.0 k	900.9 k	772.6 k	707,7 k	658.1 k	582.3 k	550.3 k	522.8 k	498.9 k	477.7 k	458.9 k	434.2 k
20.0 k 4.0 F. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	Foundation		9												
4.0 Ft. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Serv	Maximum pue aprecing rice Load Capacity of Piles	260.0 k												
6 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Location of Ext, pue fit Number of Piles	om coping at 1-nd benurer Required For END BENT	4.0.5	7	4	4	4	4	4	4	4	4	4	4	4.
232 k 211 k 225 k 193 k 177 k 165 k 146 k 138 k 131 k 125 k 119 k 115 k	Number Service	of Files Required For PIER Design Load (END BENT)	6 225 k	5 186 k	168 k	4 153 k	4 145 k	4 138 k	4 128 k	4 123 k	4 119 k	4 116 k	4 113 k	4 110 k	4 106 k
	S	ervice Design Load (PIER)	232 k	211 k	225 k	193 K	177 k	165 k	146 k	138 k	131 k	125 k	119 k	115 k	109 k

November 29, 2000 Done by: M. LaCourte Checked by: C. Li Tamianii Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Cops of Engineers, Jacksonville, Florida FOUNDATION LOADS ON DRILLED SHAFT LSTRUCT Design Tamiami Trail design konvamiya is ishomsi wa-1,2 4 (Type A Bridges 1 and 4.xb) COSI Alternatives 1, 2 & 4 (Bridges 1 & 4)

Bridge Width 43.08 Ft.	Nu	Number of lanes	0		Numbe	Number of Florida Double Tee = 6	Nouble Tee -	9						
Number of Spans	5 spans	6 spans	7 spans	S spans	9 spans	10 spans	11 spans	12 spans	13 spans	14 spans	15 spans	16 spans	17 spans	18 spans
Beam Type		≥	Ħ	≡	≡	Ħ	П	=	=	=	=	п	п	п
Beam Weight (k/ft)	0.822 kH	0.822 kIF	0.583 kdf	0.583 kdf	0.583 kdf	0.583 kH	0.384 kH	0.384 kif	0.384 kdf	0.384 kif	0.384 kdf	0.384 kdf	0.384 kdf	0.384 kdf
Number of Beams	6 beams	4 beams	5 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams
Span Length (ft)	94.40 Ft.	79.17 Ft.	68.29 Ft.	60.13 Ft.	53.78 FL	48.70 Ft.	44.55 Ft.	41.08 Ft.	38.15 Ft.	35.64 Pt.	33.47 Ft.	31.56 PL	29.88 Ft.	28.39 HL
Beam Span (ft)	92.40 Ft.	77,17 R.	66.29 Ft.	58.13 FL	51.78 Ft.	46.70 Ft.	42.55 Ft.	39.08 Ft.	36.15 Ft.	33.64 FL	31.47 FL	29.56 Ft.	27.88 FL	26.39 FL
Bridge Deck Thickness (in)	8 50 in	8.50 in.	8.50 m	8.50 in.	8.50 in.	8.50 in.	8.50 in	8.50 in.	8.50 in	8.50 in.	8.50 in.	8.50 in.	8.00 in.	8.00 in.
Comp. Loads (ksf)	-	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf
Barrier Loads (k/ft)(both sides)	0.836 Mf	0.836 Mf	0.836 kH	0.836 kJf	0.836 kdf	0.836 kdf	0.836 Mf	0.836 kif	0.836 kH	0.836 kIf	-0.836 kJľ	0.836 kHf	0.836 kdf	0.836 klf
Dead Load														
Beam Load (End Bent)		399.9 k	332.2 k	274.9 k	245.9 k	222.7 k	186.0 k	171.5 k	159.3 k	148.8 k	139.7 k	131.8 k	120.7 k	1147 k
Bean Load (Pier)	1108.8 k	7 29.7 k	664.3 k	\$49.9 k	491.8 K	445.4 k	371.9 k	343.0 k	318.6 k	297.6 k	279.4 k	263.5 k	241.5 k	229,4 k
Live Load														
Reduction factor for Substructure	0.0													
•														
LL Reaction per lane (END BENT)			16.67	10.01	40.6	7003	10.75	1 7 52	24.42	31.53	4019	41.05	1507	11.87
Inuck load	04.7 K	30.00	47.0 4	44.3 k	40.55	20.6 K	40.3 k	10.00	36.45	37.4%	36.74	36.1 k	35.6 k	35.1 k
Total Live Load (END BENT)	175.2 k	171.5 k	167.8 k	164.2 k	160.7 k	157.1 k	153.7 k	150.2 k	146.8 k	143.5 k	140.2 k	136.9 k	133.7 k	130.5 k
I.I. Reaction per lane (PIER)							:				26.11	27.75	40.4	40.03
Truck load		64.91	63.8 K	62.7 K	61.6 K	300 E	M 4 5 5 5	58.4 K	37.3 %	20.5 %	20.08	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25.5 A.	36.3 K
Total Live Load (PIER)	233.3 k	207.0 k	188.2 k	174.1 k	1663 k	163.4 k	160.5 k	157.6 k	154.8 k	152.0 k	149.2 k	146.5 k	143.8 k	141.1 k
TotalLoad														
Superstructure Load (END BENT)	934.8 k	776.5 k	705.2 k	644.3 k	611.8 k	585.0 ₺	544.8 k	526.9 k	511.3 k	497.5 k	485.1 k	473.9 k	459.6 k	450.4 k
Superstructure Load (PIER)	1419.7 k	1084.3 k	930.1 k	801.5 k	735.7 k	686.3 k	¥ 6:609	578.2 k	\$50.9 k	527.1 k	506.2 k	487.6 k	462.8 k	448.1 k
Maximum pile spacing														
Location of Ext. shaft from coping at End Bent Number of Piles Remired For END BENT	33	en	"		۴	e	m	6	m		ю	'n	3	16
Number of Piles Required For PIER		rì	~	7	7	2	2	7	7	72	7	7	73	14
Service Design Load (END BENT) Service Design Load (BIED)	312 k	259 k	235 k	215 k	268 k	195 k 343 k	182 k 305 k	176 k 289 k	170 k	166 k 264 k	162 k 253 k	158 k 244 k	153 K 231 k	150 k 224 k
(VICIA) FROT IRRED DOLARDO	2	4	4 000	4 174	4 200	4	4							

Corps of Engineers, Jacksonville, Florida

Done by: M. LeComb

Done by: M. LeCo

Checked by: C. Li

INTERMEDIATE BENTS / PIERS

Alternatives 1, 2 & 4 (Bridges 1 & 4)

\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternatives-1,2,4\[Type A Bridges 1 and 4.xls]COST

November 29, 2000

Intermediate Bent Section

Pier Section (2 Drilled Shafts)

Foundation Type	18 in. Pile	24 in. Pile	36 in. Shaft
Estimated Pile Embedment Length	19 ft.	19 ft.	14 ft.
Pile Length Above Ground	8 ft.	8 ft.	8 ft.
Total Length of Pile	27 ft.	27 ft.	22 ft.
Estimated Cost of One Pile/Drilled Shaft	\$891	\$1,242	\$4,840
Bent cap cross sectional area	9.0 sq.ft	9.0 sq.ft	12.0 sq.ft
Bent Cap Length	43 ft.	43 ft.	43 ft.
Total Concrete Volume	14.4 CY	14.4 CY	19.1 CY
Reinforcement at 145 lbs/CY	2082 lbs	2082 lbs	2776 lbs
Estimated Cost of Bent Cap	\$6,897	\$6,897	\$9,196

PRESTRESSED PILES	18 in.	24 in.	DRILLED SHAFT	36 in.
Number of test loads per bridge	3 ea.	3 ea.	Number of test loads per bridge	1 ca.
1			Core (Shaft Excavation)	
			Length of temporary casing	
Est, total cost of test piles w/ dynamic load test per bridge	\$20,160	\$20,160	% of casing splice	
			Excavation, unclassified shaft	
% of pile splice	10%	10%	Drilled shaft sidewall overreaming	
% of pile hole preformed	100%	100%	Excavation, unclassified extra depth	

Number	Number	25 335 10	Number of	8000	st of Piles	Total Cost of	Tot	al Estimated	
of	Requ	ired	Drilled Shafts	per Be	nt / Pier	Drilled Shaft		of ONE Pie	
Spans	18 in.	24 in.	36 in.	18" Pile	24" Pile	per Pier	18" Pile	24" Pile	36" Shaft
5	10	6	2	\$16,060	\$13,794	\$22,180	\$22,957	\$20,691	\$31,376
6	8	5	2	\$12,848	\$11,327	\$19,680	\$19,745	\$18,224	\$28,876
7	7	4	2	\$11,074	\$9,196	\$18,013	\$17,971	\$16,093	\$27,209
8	6	4	2	\$9,492	\$8,716	\$16,823	\$16,389	\$15,613	\$26,019
9	5	4	2	\$8,030	\$8,356	\$15,930	\$14,927	\$15,253	\$25,126
10	5	4	2	\$7,750	\$8,076	\$15,236	\$14,647	\$14,973	\$24,431
11	4	4	2	S6,424	\$7,852	\$14,680	\$13,321	\$14,749	\$23,876
12	4	4	2	\$6,241	\$7,669	\$14,225	\$13,138	\$14,566	\$23,421
13	4	4	2	\$6,088	\$7,516	\$13,847	\$12,985	\$14,413	\$23,043
14	4	4	2	\$5,959	57,387	S13,526	\$12,856	\$14,284	S22,722
15	4	4	2	\$5,848	\$7,276	\$13,251	\$12,745	\$14,173	S22,447
16	4	4	2	\$5,752	\$7,180	\$13,013	\$12,649	\$14,077	S22,209
17	4	4	2	\$5,668	\$7,096	\$12,805	\$12,565	\$13,993	\$22,001
18			2			\$12,621			\$21,817

Corps of Engineers, Jacksonville, Florida

Alternatives 1, 2 & 4 (Bridges 1 & 4)

END BENTS

0.53

Checked by: C. Li

November 29, 2000

P\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternatives-1,2,4\[Type A Bridges 1 and 4,xls]COST

	Foundation Type	18 in. Pile	24 in. Pile	36 in. Shaft
Estimated	Pile Embedment Length	19 ft.	19 ft.	14 ft.
Pi	le Length Above Ground	8 ft.	8 ft.	8 ft.
	Total Length of Pile	27 ft.	27 ft.	22 ft.
- Estimated Cost	of One Pile/Drilled-Shaft	\$891	\$1,242	\$4,840
Ben	t cap cross sectional area	7.5 sq.ft	7.5 sq.ft	12.0 sq.ft
	Bent Cap Length	43 ft.	43 ft.	43 ft.
	Total Concrete Volume	12.0 CY	12.0 CY	19.1 CY
Reinforcement at	145 lbs/CY	1735 lbs	1735 lbs	2776 lbs
	Estimated Cost of Bent Cap	\$5,747	\$5,747	\$9,196

PRESTRESSED PILES	18 in.	24 in.	DRILLED SHAFTS	36 in.
			Core(Shaft Excavation)	
			Length of temporary casing	
			Percentage of casing splice	
			Excavation, unclassified shaft	
% of pile splice	10%	10%	Drilled shaft sidewall overreaming	
% Pile hole preformed	100%	100%	xcavation, unclassified extra depth	

Number of Piles			Number of	Total Co	st of Piles	Total Cost of	Total Estimated Cost			
of	of Required ¹		Drilled Shafts ²	per Ber	nt / Pier	Drilled Shaft	of ONE Pier			
Spans	18 in.	24 in.	36 in.	18" Pile	24" Pile	per Pier	18" Pile	24" Pile	36" Shafi	
5	9	6	5	\$9,918	\$8,754	\$24,200	\$29,053	\$27,889	\$46,783	
6	8	6	5	\$8,816	\$8,754	\$24,200	\$27,951	\$27,889	\$46,783	
7	7	6	5	\$7,714	\$8,754	\$24,200	\$24,181	\$25,221	S44,115	
8	7	6	5	\$7,714	\$8,754	\$24,200	S24,181	\$25,221	\$44,115	
9	6	6	5	\$6,612	\$8,754	\$24,200	\$23,079	\$25,221	\$44,115	
10	6	6	5	\$6,612	\$8,754	S24,200	\$23,079	\$25,221	\$44,115	
11	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	\$22,794	\$41,688	
12	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	\$22,794	\$41,688	
13	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	\$22,794	\$41,688	
14	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	\$22,794	\$41,688	
15	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	\$22,794	\$41,688	
16	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	\$22,794	\$41,688	
17	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	\$22,794	\$41,688	
18			5			\$24,200			\$41,688	

¹Includes wingwall piles for Type IV, III, II beams.

²Includes wingwall drilled shafts for Type IV, III, II beams.

Corps of Engineers, Jacksonville, Florida

Alternatives 1, 2 & 4 (Bridges I & 4)

SUBSTRUCTURE & SUPERSTRUCTURE ALTERNATIVES COMPARISON

Checked by: C. Li

\STRUCT\Design\Taminmi-Trail\design\cost-analysis\alternatives-1,2,4\Type A Bridges 1 and 4.xls|COST

November 29, 2000

Number	lumber ADJUSTED SPAN LENGTH			Number	C	ost of Substruc	ture	Cos	t of Superstru	cture	Total Cost of Structure		
of	18 in.	24 in.	36 in.	of	18 in.	24 in.	36 in.	18 in.	24 in.	36 in.	18 in.	24 in.	36 in.
Spans	Pile	Pile	Shaft	Piers	Pile	Pile	Shaft	Pile	Pile	Shaft	Pile	Pile	Shaft
5	93.20 Ft.	93.60 Ft.	94.40 Ft.	4	\$149,934	\$138,542	\$219,070	\$446,732	\$448,649	\$452,484	\$596,666	\$587,191	\$671,554
6	77.92 Ft.	78.33 Ft.	79.17 Ft.	5	\$154,627	\$146,898	\$237,946	\$369,630	\$371,607	\$375,560	\$524,256	\$518,504	\$613,506
7	67.00 Ft.	67.43 Ft.	68.29 Ft.	6	\$156,187	\$146,999	\$251,486	\$370,347	\$372,716	\$377,454	\$526,534	\$519,715	\$628,939
8	58.81 Ft.	59.25 Ft.	60.13 Ft.	7	\$163,084	\$159,732	\$270,362	\$340,008	\$342,537	\$347,596	\$503,092	\$502,269	\$617,957
9	52.44 Ft.	'52.89'Fc.	53:78 Ft.	- 8	S165,573	*\$172,465	"S289,237 "	\$341,092	\$343,982	\$349,764	\$506,665	\$516,447	\$639,001
10	47.35 Ft.	47.80 Ft.	48.70 Ft.	9	\$177,980	\$185,198	\$308,113	\$342,176	\$345,428	\$351,932	\$520,155	\$530,625	\$660,045
11	43.18 Ft.	43.64 Ft.	44.55 Ft.	10	\$174,513	\$193,077	\$322,135	\$318,560	\$321,913	\$328,620	\$493,072	\$514,990	\$650,755
12	39.71 Ft.	40.17 Ft.	41.08 Ft.	11	S185,817	\$205,809	\$341,011	\$319,566	\$323,254	\$330,632	\$505,383	\$529,064	\$671,643
13	36.77 Ft.	37.23 Ft.	38.15 Ft.	12	\$197,122	\$218,542	\$359,887	S320,572	\$324,596	\$332,643	\$517,694	\$543,138	\$692,530
14	34.25 Ft.	34.71 Ft.	35.64 Ft.	13	S208,427	\$231,275	\$378,763	\$321,578	\$325,937	\$334,655	\$530,005	\$557,212	\$713,418
15	32.07 Ft.	32.53 Ft.	33.47 Ft.	14	\$219,732	\$244,008	\$397,639	\$322,584	\$327,278	\$336,667	\$542,316	\$571,287	\$734,306
16	30.16 Ft.	30.63 Ft.	31.56 Ft.	15	\$231,037	\$256,741	\$416,515	\$323,590	\$328,620	\$338,679	\$554,627	\$585,361	\$755,194
17	28.47 Ft.	28.94 Ft.	29.88 Ft.	16	\$242,342	S269,474	\$435,391	\$324,596	\$329,961	\$340,691	\$566,938	\$599,435	\$776,082
18			28.39 Ft.	17			\$454,267			\$342,703			\$796,970

SUMMARY OF MOST ECONOMICAL ALTERNATIVES FOR EACH SPAN ARRANGEMENT:

Number of Spans	Estimated Cost	Foundation Alternative	Superstructure Alternative	Number of Spans	Number of Beams	Number of Piles or Drilled Shafts	Total Length of Piles or Drilled Shafts	Number of Test Piles	Total Length of Test Piles
5	\$587,191	24 in.	Type IV	5	6	33	891 ft	3	126 ft
6	\$518,504	24 in.	Type IV	6	4	34	918 ft	3	126 ft
7	\$519,715	24 in.	Type III	7	5	33	891 ft	3	126 ft
8	\$502,269	24 in.	Type III	8	4	37	999 ft	3	126 ft
9	\$506,665	18 in.	Type III	9	4	49	1323 ft	3	126 ft
10	\$520,155	18 in.	Type III	10	4	54	1458 ft	3	126 ft
11	\$493,072	18 in.	Type II	11	4	49	1323 ft	3	126 ft
12	\$505,383	18 in.	Type II	12	4	53	1431 ft	3	126 ft
13	\$517,694	18 in.	Type II	13	4	57	1539 ft	3	126 ft
14	\$530,005	18 in.	Type II	14	4	61	1647 ft	3	126 ft
15	\$542,316	18 in.	Type II	15	4	65	1755 ft	3	126 ft
16	\$554,627	18 in.	Type II	16	4	69	1863 ft	3	126 ft
17	\$566,938	18 in.	Type II	17	4	73	1971 ft	3	126 ft
18	\$796,970	36 in.	Type II	18	4	44	968 ft		
		97		15-17-18-18				V.11	

\$493,072 <--- Minimum

RESULT OF COST COMPARISON STUDY:

Most economical superstructure type: Type II Most economical substructure type: 18 in.

Optimum Span Arrangement: 11 spans at 43.18 FT.

Total bridge length: 475.00 Ft.

Total number of beams: 44

Total length of beams: 1900.00 Ft.

Number of piles or drilled Shafts: 49

Length of Piles or drilled Shafts: 1323.00 Ft.

Corps of Engineers, Jacksonville, Florida

\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternatives-1,2,4\[Type A Bridges 1 and 4.xls]COST

Alternatives 1, 2 & 4 (Bridges 1 & 4)

ESTIMATE OF PROBABLE CONSTRUCTION COSTS

I'DS

Done by: M. LeComte

Checked by: C. Li

November 29, 2000

ltem	Quantity	Units	Unit Price	Δ	mount
SUPERSTRUCTURE:					
Concrete	505.6	CY	\$310	\$	156,721
Reinforcing Steel	103638	LBS	\$0.45	1	46,637
Bridge Floor Grooving	2111	SY	\$2.50		\$5,278
Traffic Railing Barrier	950.0	FT	\$35	\$	33,250
Expansion Joints ³	86.2	FT	\$84		\$7,238
Type II Beam	1900.0	FT	S54	\$	102,600
Neoprene Bearing Pads	9.627	CY	\$425		\$4,092
		Superstr	ructure Subtotal	S	355,815
SUBSTRUCTURE:					
Concrete	201.9	CY	\$415	5	83,796
Reinforcing Steet ²	29278	LBS	\$0.45	5	13,175
Pile Hole, Preformed	49	EA	\$200		\$9,800
Test Piles	126	Ft.	\$160		\$20,160
18 in. Prestressed Concrete Piles (F & I)	1323	Ft.	\$33	5	\$43,659
Pile Splices	5	EA	\$110		\$550
Drilled shaft		LF	\$220		
Test load for drilled shaft		EA	\$50,000		
Core (Shaft Excavation)		LF			
Temporary casing		LF			
Casing splice		EA			
Excavation, unclassified shaft		LF			
Drilled shaft sidewall overreaming		LF			
Excavation, unclassified extra depth		LF			
		Substi	ructure Subtotal		\$171,140
		Construction	on Cost Subtotal		\$526,955
Mobilization (5% of Construction Cost)	1	LS		\$	26,348
Contingency (15% of Construction Cost)	1	LS		\$	79,043

Total Construction Cost \$632,347

Deck Square Footage (Ft.) 20,465 Cost Per Square Foot \$30.90/sf

Lbs/CY.

¹Ratio of reinforcement to superstructure concrete: 205

²Ratio of reinforcement to substructure concrete: 145 Lbs/CY.

³Number of expansion piers: 2

Corps of Engineers, Jacksonville, Florida

Done by: M. LeComte

Alternatives 1, 2 & 4 (Bridges 2

& 3)

BRIDGE AND SPAN LENGTHS

Checked by: C. Li

L\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternatives-1,2,4\{Type B Bridges 2 and 3.xls|SUPER

November 29, 2000

Determine Bridge Length based on hydraulic opening:

Hydraulic Opening Width at Natural Ground Level 300.00 Ft.

> Natural Ground Elevation 5.00 Ft.

Control Water Elevation 7.50 Ft.

Minimum Clearance over Control Water Elevation

6.00 Ft.

3.00 Ft.

Vertical Distance from bottom of beams to top of Berm where slope starts

2.25 Ft.

Distance From FFBW to Front Edge of End Bent Cap

2.00 Ft.

Minimum Span length

28.00 Ft.

Preliminary Bridge Length (No adjustment due to pile/drilled shaft in the opening), L' = 335.00 Ft.

Number of	ADJUS	TED BRIDGE LI	ENGTH (L)	AN LENGTH		
Spans	18 in. Pile	24 in. Pile	36 in. Drilled Shaft	18 in. Pile	24 in. Pile	36 in. Drilled Shaft
4	339.50 Ft.	341.00 Ft.	344.00 Ft.	84.88 Ft.	85.25 Ft.	86.00 Ft.
5	341.00 Ft.	343.00 Ft.	347.00 Ft.	68.20 Ft.	68.60 Ft.	69.40 Ft.
6	342.50 Ft.	345.00 Ft.	350.00 Ft.	57.08 Ft.	57.50 Ft.	58.33 Ft.
7	344.00 Ft.	347.00 Ft.	353.00 Ft.	49.14 Ft.	49.57 Ft.	50.43 Ft.
8	345.50 Ft.	349.00 Ft.	356.00 Ft.	43.19 Ft.	43.63 Ft.	44.50 Ft.
9	347.00 Ft.	351.00 Ft.	359.00 Ft.	38.56 Ft.	39.00 Ft.	39.89 Ft.
10	348.50 Ft.	353.00 Ft.	362.00 Ft.	34.85 Ft.	35.30 Ft.	36.20 Ft.
11	350.00 Ft.	355.00 Ft.	365.00 Ft.	31.82 Ft.	32.27 Ft.	33,18 Ft.
12	351.50 Ft.	357.00 Ft.	368.00 Ft.	29.29 Ft.	29.75 Ft.	30.67 Ft.
13	353.00 Ft.	359.00 Ft.	371.00 Ft.			28.54 Ft.

Corps of Engineers, Jacksonville, Florida

Checked by: C. Li

Alternatives 1, 2 & 4 (Bridges

2 & 3)

BEAM SPACING vs. DESIGN SPAN

I:\STRUCT\Design\Tamiami-Trait\design\cost-analysis\alternatives-1,2,4\[Type B Bridges 2 and 3.xls|SUPER_COMP

November 29, 2000

Determine beam spacing and design span:

Bridge Width: 43.08 Ft. Slab Thickness: 8.50 in.

Number	Beam		² Design Span									
of Beams	Spacing	AASHTO Type II	AASHTO Type III	AASHTO Type IV	18" Double T	24" Double T	30" Double T					
4	10.77 Ft.	46.00 Ft.	65.00 Ft.	84.00 Ft.								
5	8.62 Ft.	52.00 Ft.	73.00 Ft.	90.00 Ft.								
6	7.18 Ft.	58.00 Ft.	78.00 Ft.	96.00 Ft.	40.00 Ft.	50.00 Ft.	60.00 Ft.					
7	6.15 Ft.	62.00 Ft.	82.00 Ft.	98.00 Ft.								
8	5.39 Ft.	66.00 Ft.	84.00 Ft.	102.00 Ft.								

¹Beam spacing is based on assuming the cantilever to be half of the beam spacing.

²Design spans are determined from the charts based on the beam spacing given.

Corps of Engineers, Jacksonville, Florida

PBS,

Done by: M. LeCom

Checked by: C. Li

Alternatives 1, 2 & 4 (Bridges 2 & 3)

AASHTO BEAMS COMPARISON

STRUCT/Design/Tamiami-Trail/design/cost-analysis/alternatives-1,2,4/[Type B Bridges 2 and 3.xls|SUPER_COMP

November 29, 2000

Number	1	Adjusted Spa Length	n	Number of AASHTO Beams Required								
of Spans	PII	ES	Drilled		18" Piles			24" Piles		Drilled Sha		
	18 in.	24 in.	Shaft	11	III	IV	It	101	IV	11	Ш	IV
4	84.88 Ft.	85.25 Ft.	86.00 Ft.		- 8	5		8	5		8	5
5	68.20 Ft.	68.60 Ft.	69.40 Ft.		5	4		5	4		5	4
6	57.08 Ft.	57.50 Ft.	58.33 Ft.	6	4	4	6	4	4	7	4	4
7	49.14 Ft.	49.57 Ft.	50.43 Ft.	.5	4	4	5	4	4	5	4	4
8	43.19 Ft.	43.63 Ft.	44.50 Ft.	4	4	4	4	4	4	4	4	4
9	38.56 Ft.	39.00 Ft.	39.89 Ft.	4	4	4	4	4	4	4	4	4
10	34.85 Ft.	35.30 Ft.	36.20 Ft.	4	4	4	4	4	4	4	4	4
11	31.82 Ft.	32.27 Ft.	33.18 Ft.	4	4	4	4	4	4	4	4	4
12	29.29 Ft.	29.75 Ft.	30.67 Ft.	4	4	4	4	4	4	4	4	4
13			28.54 Ft.							4	4	4
										-	_	-
										-		-

Number	Estimated Construction Cost of AASHTO Beams												
of Spans		18 in. Piles			24 in, Piles		DF	RILLED SH.	AFT				
	II	101	IV	п	Ш	IV	II	III	IV				
4	N/A	\$181,972	\$142,590	N/A	\$182,776	\$143,220	N/A	\$184,384	\$144,480				
5	N/A	S114,235	S114,576	N/A	\$114,905	\$115,248	N/A	\$116,245	\$116,592				
6	\$110,970	\$91,790	\$115,080	\$111,780	S92,460	\$115,920	\$132,300	\$93,800	\$117,600				
7	\$92,880	\$92,192	\$115,584	\$93,690	S92,996	\$116,592	\$95,310	\$94,604	S118,608				
8	\$74,628	\$92,594	\$116,088	\$75,384	\$93,532	\$117,264	\$76,896	\$95,408	\$119,616				
9	\$74,952	592,996	\$116,592	\$75,816	\$94,068	\$117,936	\$77,544	\$96,212	\$120,624				
10	\$75,276	\$93,398	\$117,096	\$76,248	\$94,604	\$118,608	\$78,192	\$97,016	\$121,632				
11	\$75,600	\$93,800	\$117,600	\$76,680	\$95,140	\$119,280	\$78,840	\$97,820	\$122,640				
12	\$75,924	\$94,202	\$118,104	\$77,112	\$95,676	\$119,952	\$79,488	\$98,624	\$123,648				
13	N/A	N/A	N/A	N/A	N/A	N/A	\$80,136	\$99,428	\$124,656				

YPE IV III III	COST \$142,590 \$114,235	24° I TYPE IV III	COST \$143,220	DRILLE TYPE IV	D SHAFT COST
IV III III	\$142,590 \$114,235	1V	\$143,220		COST
111 111	\$114,235			11/	
Ш	manufacture of the second	Ш			\$144,480
	COL 200		\$114,905	111	\$116,245
***	\$91,790	Ш	\$92,460	Ш	\$93,800
Ш	\$92,192	ш	\$92,996	III	\$94,604
11	\$74,628	II.	\$75,384	II	\$76,896
11	\$74,952	II	\$75,816	П	\$77,544
II	\$75,276	II	S76,248	II	\$78,192
II	\$75,600	II	\$76,680	11	\$78,840
II	\$75,924	11	\$77,112	11	\$79,488
				11	\$80,136
			-		
			-		
	10 10 10	H \$74,628 H \$74,952 H \$75,276 H \$75,600	H \$74,628 H S74,952 H S75,276 H S75,600 H	H \$74,628 H \$75,384 H \$74,952 H \$75,816 H \$75,276 H \$76,248 H \$75,600 H \$76,680	H \$74,628 H \$75,384 H \$74,952 H \$75,816 H \$75,276 H \$76,248 H \$11 \$75,600 H \$76,680 H \$75,924 H \$77,112 H

Corps of Engineers, Jacksonville, Florida

Alternatives 1, 2 & 4 (Bridges 2 & 3)

SUPERSTRUCTURE ALTERNATIVES COMPARISON

Checked by: C. Li

\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternatives-1,2,4\[Type B Bridges 2 and 3.xls|SUPER_C November 29, 2000

Number		AASH	TO BEA	MS WITH	DECK			Fle	orida Doub	le Tee Bean	ns	
of	18"	PILES	24"	PILES	DRILL	ED SHAF	18" F	PILES	24" I	PILES	DRILLI	ED SHAF
Spans	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST
4	IV	\$296,944	IV	\$298,256	IV	\$300,880	N/A		N/A		N/A	
5	111	\$269,271	111	\$270,851	111	\$274,009	N/A		N/A		N/A	
6	- III	\$247,508	ШІ	\$249,315	711	S252,928	FDT30	\$513,750	FDT30	\$517,500	FDT30	\$525,000
7	111	\$248,592	III	\$250,760	111	\$255,096	FDT24	\$443,760	FDT24	\$447,630	FDT30	\$529,50X
8	11	\$231,710	11	\$234,058	11	\$238,752	FDT24	\$445,695	FDT24	\$450,210	FDT24	\$459,240
9	11	\$232,716	11	\$235,399	- 11	\$240,764	FDT18	\$374,760	FDT18	\$379,080	FDT18	\$387,720
10	11	\$233,722	11	\$236,740	11	\$242,776	FDT18	\$376,380	FDT18	S381,240	FDT18	\$390,966
11	- 11	\$234,728	11	\$238,082	11	\$244,788	FDT18	\$378,000	FDT18	\$383,400	FDT18	\$394,20
12	II	\$235,734	II	\$239,423	11	\$246,800	FDT18	\$379,620	FDT18	\$385,560	FDT18	\$397,44
13					11	\$248,812					FDT18	\$400,68
										1.834-		
					0							
										West Colored		

Deck Reinforcement 205 lbs/CY concrete Cost of Deck per foot \$455/ft.

			PREC	AST SLAB				MOST	ECONOM	ICAL SUPE	RSTRU	CTURE A	LTERNA	TIVE	-
Number	18"	PILES	24"	PILES	DRILL	ED SHAF		18 in. Pil	e	2	4 in. Pile	e	36	5 in. St	ıaft
of	Thick-	Estimated	Thick-	Estimated	Thick-	Estimated	Number	Beam	Estimated	Number	Beam	Estimated	Number	Beam	Estimated
Spans	ness	Cost	ness	Cost	ness	Cost	of Beams	Type	Cost	of Beams	Type	Cost	of Beams	Type	Cost
4					8		5	IV	\$296,944	5	IV	\$298,256	5	IV	\$300,880
5							5	III	\$269,271	5	111	\$270,851	5	III	\$274,009
6							4	III	\$247,508	4	111	\$249,315	4	111	\$252,928
7							4	III	\$248,592	4	111	\$250,760	4	111	\$255,096
8							4	II	\$231,710	4	- 11	\$234,058	4	- 11	\$238,752
9	23	\$795,945	23	\$805,120	23	\$823,470	4	II	\$232,716	4	11	\$235,399	4	II	\$240,764
10	21	\$729,874	21	\$739,298	22	\$794,249	4	II	\$233,722	4	- 11	\$236,740	4	11	\$242,776
11	20	\$698,110	20	\$708,083	20	\$728,029	4	II	\$234,728	4	11	\$238,082	4	11	\$244,788
12	18	\$630,991	19	\$676,468	19	\$697,312	4	II	\$235,734	4	11	\$239,423	4	11	\$246,800
13					18	\$665,997			17				4	11	\$248,812

Tringle Width \$1.05	se 1, 2 & 4 sign Tamban Trait designion ridge Width 43.08 Ft. Bridge I Br	N LOADS an	ACCOUNT OF THE PARTY OF	107 4	Accompany of the last		100	Character for	2 6	
Finder Width 43.08 Fr. Number of Fages System Sys	Design Width 43.08 Ft. Number of Spa Beam Typ Beam Span I see The Span I see Typ Beam Span I see The Span I see Typ Beam Span I see The Span		d NUMBER	t of 18 m.	PRESTRE	SSED PILE	2	Capewon at		
Number of Spans 4 spans 5 spans 5 spans 7 spans 8 spans 9 spans 10 spans 11 spans	Indige Windige	cs-1,2,4(Type B Bnd	ges 2 and 3.xls[S]	DVOD NEAD				oN.	wember 29, 20	000
Number of Spans	I. Reactio									
Number of Spans	L Reactio	Nu	mber of lanes	9		Numb	er of Florida I	Double Tee -	9	
Number of Spans	L Reactio									
	L Reactio L Reactio		S spans	sunds 9	2 spans	S spans	9 spans	10 spans	11 spans	12 spans
Reduction from State 0.553 Mf 0.554 Mf 0.554 Mf 0.554 Mf 0.554 Mf 0.554 Mf 0.554 Mf 0.554 Mf 0.554 Mf 0.555 Mf	L Reactio L Reactio		E	Ξ	111	п	п	=	=	п
Number of Reams Sheams S	L Reactio		0.583 Mf	0.583 kif	0.583 kdf	0.384 Mf	0.384 kH	0.384 kJf	0.384 Mf	0.384 kdf
Heigh Deck Thickness (ft) 8.59 ft. 63.0 ft. 53.08 ft. 41.14 ft. 41.19 ft. 55.5 ft. 31.57 ft. 31.27 ft. 52.08 ft. 52.08 ft. 41.19 ft. 55.5 ft. 31.57 ft. 31.57 ft. 31.58 ft. 31.57 ft. 31.58 ft. 31.57 ft. 31.58 ft. 31.57 ft. 31.58 ft. 31	L Keactio L Reactio		5 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams
Bridge Dext Thickness (to) 8.50 in. 8	L Keactio L Keactio Lul Live l L Reactio		68.20 Ft.	57.08 Ft.	49.14 Ft.	43.19 FL	38.56 Ft.	34.85 Ft.	31.82 Pt.	29.29 Ft.
Prince Load (END BENT) S.50 in. 8.50	L Reactio L Reactio		66.20 Ft.	55.08 Pt.	47.14 Ft.	41.19 Ft.	36.56 Ft.	32.85 Ft.	29.82 H.	27.29 Ft.
Barrier Loads (kth) bours kaf 0.035 ka	L Keactio L Keactio Lullive I L Reactio		8.50 in.	8.50 in.	8.50 in.	8 50 in.	8.50 in.	8.50 in	8.50 in.	8.50 in.
Partier Loads (Pritybords sides) 0.836 kH 0.836 k	L Reactio		0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf
Beam Load (Tod Beam) 663.6 k 331.7 k 261.0 k 224.7 k 180.3 k 161.0 k 145.5 k 132.8 k Beam Load (Fig.) 927.1 k 663.5 k 522.1 k 419.4 k 360.6 k 321.9 k 291.0 k 265.7 k Exection per lane (EXD BENT) Truck load 64.1 k 62.1 k 60.2 k 58.3 k 56.4 k 54.6 k 52.7 k 50.9 k Late load (END BENT) Late load 53.2 k 41.7 k 30.8 k 34.3 k 41.7 k 30.8 k 34.2 k 37.2 k 36.2 k Late load (END BENT) Late load 65.4 k 65.3 k 62.2 k 60.6 k 57.5 k 57.6 k 50.7 k 48.3 k 46.4 k Late load (END BENT) Late load (END BENT) 120.2 k 63.8 k 62.5 k 57.5 k 57.6 k 50.7 k 48.3 k 46.4 k Superstructure Load (END BENT) 120.2 k 67.5 k 57.5 k 57.8 k 57.5 k	L Reactio Lune I		0.836 kIF	0.836 kH	0.836 Mf	0.836 kdf	0.836 Mf	0.836 kH	0.836 kJf	0.836 kdf
Reduction Taxion 143.6 k 331.7 k 261.0 k 224.7 k 180.3 k 161.0 k 145.5 k 132.8 k Reduction Taxion 0.9	L Keactio L Reactio L Reactio									
Reduction factor 0.9	L Reactio		331.7 K	261.0 k	224.7 k	180.3 k	161.0 k	145.5 k	132.8 k	122.3 k
Prediction factor 0.9	L Reaction on Live l		663.5 k	522.1 k	449.4 K	360.6 k	321.9 k	291.0 k	265.7 k	244.6 k
Reduction factor 0.9	. Reactio									
Impact factor for Substance 10	Reaction Live I									
Reaction per lane (END BENT) Truck load (64.1k 62.1k 60.2k 58.3k 56.4k 54.6k 52.7k 50.9k	Lal Live I									
Lanc load GND BENT Lanc load GS 2.2 k 47.8 k 41.7 k 39.8 k 38.3 k 37.2 k 36.2 k 37.2 k 47.3 k 41.7 k 39.8 k 38.3 k 37.2 k 36.2 k 37.2 k 47.3 k 47.	tal Live I Reactio		62.1 k	60.2 %	58.3	56.4 k	54.6 k	52.7 k	50.9 k	49.1 k
Reaction per lane (PIER)	tal Live I		47.8 %	44.3 k	41.7 k	39.8 k	38.3 k	37.2 k	36.2 k	35.4 k
Reaction per Lane (PIER) Truck load 65.4 k 63.8 k 62.2 k 60.6 k 59.0 k 57.5 k 55.9 k 54.4 k Lane load Ro.3 k 69.6 k 62.5 k 57.5 k 53.6 k 50.7 k 48.3 k 46.4 k Lane load Ro.3 k 69.6 k 62.5 k 57.5 k 53.6 k 50.7 k 48.3 k 46.4 k Lane load Ro.3 k 188.0 k 168.8 k 163.6 k 155.2 k 151.0 k 145.9 k Superstructure Load (END BENT) 120.2 k 599.7 k 558.3 k 578.2 k 578.2 k 578.2 k 446.3 k Maximum pile spacing 13.0 ft	. Reactio		167.8 k	162.6 k	157.5 %	152.4 k	147.3 k	142.3 k	137.4 k	132.5 k
Lane load (PIER)	tal Live I		200	62.2 %	80.6k	59.0 k	57.5 k	\$5.9 k	54.4 k	52.9 k
Superstructure Load (END BENT) 216.9 k 188.0 k 168.8 k 163.6 k 159.4 k 155.2 k 151.0 k 146.9 k Superstructure Load (END BENT) 812.7 k 672.6 k 599.7 k 558.3 k 508.8 k 484.4 k 463.9 k 446.3 k Substructure Load (END BENT) 1202.2 k 909.7 k 749.1 k 671.2 k 578.2 k 535.3 k 500.2 k 470.7 k Maximum pile spacing 13.0 Pt.	tal Live I		89.69	62.5 k	57.5 k	53.6 k	50.7 k	48.3 k	46.4 k	44.7 %
Superstructure Load (END BENT) 812.7 k 675.6 k 599.7 k 558.3 k 508.8 k 484.4 k 463.9 k 446.3 k Superstructure Load (PIER) 1202.2 k 909.7 k 749.1 k 671.2 k 578.2 k 550.2 k 470.7 k Service Load Capacing Of Piles 13.0 ft. 671.2 k 578.2 k 550.2 k 470.7 k Service Load Capacing of Piles 147.0 k 671.2 k 578.2 k 553.3 k 470.7 k Number of Piles Required For END BENT 6 5 5 4 4 4 Number of Piles Required For END BENT 6 5 5 4 4 4 4 Service Design Load (END BENT) 135 k 135 k 120 k 137 k 118 k 112 k Service Design Load (PIER) 134 k 130 k 134 k 135 k 118 k			188.0 k	18.831	163 6 k	159.4 k	155.2 k	151.0 k	146.9 ₺	142.8 k
Superstructure Load (PIER) 1202.2 k 909.7 k 749.1 k 671.2 k 578.2 k 535.3 k 500.2 k 470.7 k An of Ext. Pile from coping at End Benchier 147.0 k 4.0 Ft. 5 5 4			675.6 k	599.7 K	558.3 k	508.8 %	484.4 k	463.9 k	446.3 k	430.8 k
Naximum pile spacing 13.0 FL Service Load Capacing of Piles 147.0 k n of Ext. pile from coping at Ead Beart Piles 4.0 FL Number of Piles Required For Piles 5 5 4 4 4 4 Number of Piles Required For Piles 5 5 5 6 5 4 4 4 Number of Piles Required For Piles 9 7 6 5 4 4 4 4 Service Design Load (END BENT) 135 k 135 k 130 k 125 k 134 k 145 k 134 k 125 k 118 k Service Design Load (PIER) 134 k 130 k 135 k 134 k 145 k 134 k 125 k 118 k Service Design Load (PIER) 134 k 130 k 135 k 136 k 135 k 136 k 135 k 136 k 135 k 136 k 135 k 136 k	Superstructure Load (PIE		909.7 k	749.1 k	671.2 k	578.2 k	535.3 k	500.2 k	470.7 k	445.5 k
13.0 Pt. 147.0 k 4.0 Pt. 6 5 5 4 4 4 4 4 9 7 6 5 4 4 4 4 135 135 120 140 k 127 k 121 k 116 k 112 k 134 130 k 125 134 145 k 134 125 k 118 k										
4.0 Fz. 5 4 4 4 4 4 4 4 4 4 9 9 7 6 5 4 4 4 4 4 4 4 4 135 k 120 k 140 k 127 k 121 k 116 k 112 k 118 k 134 k 135 k 135 k 135 k 135 k 136 k 136 k 135 k 136 k	Maximum pile spaci									
6 5 5 4 4 4 4 4 4 4 4 9 9 7 6 5 4 127k 127k 121k 116k 112k 113k 135k 125k 134k 145k 134k 125k 118k	Location of Ext. pile from coping at End Bent/P									
9 7 6 5 4 4 4 4 4 4 1 158 135 135 127 127 1218 115 112 112 112 113 113 113 113 113 113 113	Number of Piles Required For END BES		10 I	5	4	4	₩.	₩,	ব •	4.
134	Number of Piles Required For Pil		135.1	0 0	1404	133	4 101	1 1 1	117	108 6
	Service Design Load (END DELY Service Design Load (PIT		130 k	1361	134 k	145 k	134 k	125 k	1 2 1	111 1

24 in. PRESTRESSED PILES Checked		Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida	Engineering Fingineers,	tion of Engineering Appendix For GRR Corps of Engineers, Jacksonville, Florida	r GRR/SEIS				Done by	Duze by: M. LaCounte	
	Alternatives 1, 2 & 4	FOUNDATION	OADS an	4 NUMBER	t of 24 in.	PRESTRE	SSED PILE	S	Checked by:	0.13	
Number of Spars	LASTRUCT-Design Tamismi-Tr	Silidosigui cost-analysis internarives-1.2	.f(Type B Bri	gos 2 and 3.xls[5]	UPER COMP				No	November 29, 2000	000
Number of Spans											
Number of Spans	Bridge Width 4	3,08 Ft.	Ž	mber of lanes	3		Numbe	st of Florida E	houble Tee =	9	
Number of Spans 4 quars 5 quais 6 quais 7 quars 8 quais 7 quars 8 quais 7 quars 8 quais 9 quai											
Beam Type 1V III IIII III IIII IIII IIII IIII IIII IIII IIII IIII IIII I		Number of Spans	4 spans	5 spans	6 spans	7 spans	8 spans	sueds 6	10 spans	11 spans	12 spans
Parm Weight (AD) 0.82 Mf 0.533 Mf 0.533 Mf 0.533 Mf 0.354 Mf 0.355 Mf 0.3		Beam Type	Λ	П	E	Ξ	=	п	п	=	=
Reduction for large Lexal (1982) State S		Beam Weight (k/ft)	0.822 kIf	0.583 Mf	0.583 kIF	0.583 Mf	0.384 kdf	0.384 kdf	0.384 kif	0.384 kif	0.381 kdf
Span Length (7) \$5.25 Ft. \$5.60 Ft. \$7.50 Ft. 49.57 Ft. 43.51 Ft. 34.00 Ft. 35.30 Ft. Bridge Deel Thickness (iii) \$5.30 in. \$5		Number of Beams	5 beams	5 hearns	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams
Bridge Deck Thickness (iii) 8.50 in. 8		Span Length (ft)	85.25 Pt.	68.60 Ft.	57.50 Ft.	49.57 Ft.	43.63 Ft.	39.00 Ft.	35.30 Ft.	32.27 Ft.	29,75 Ft.
Bridge Deck Thickness (in) 8.50 in. 8		Beam Span (ft)	83.25 R.	66.60 Ft.	55.50 Ft.	47.57 I't.	41.63 Ft.	37.00 Ft.	33.30 Ft.	30.27 Ft.	27.75 FL
Barrier Loads (ER) 0.035 kef 0.035 k		Bridge Deck Thickness (in)	8.50 in.	8.50 in.	8.50 in.	8.50 in.	8.50 in.	8.50 m.	8.50 in.	8.50 in.	8.50 in.
Barrier Loads (Life)Doth sides) 0.836 MI		Comp. Loads (ksf)	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf
Reduction per lane (EXD BENT) 145.5 k 333.7 k 202.9 k 255.7 k 112.1 k 162.8 k 147.4 k 14	B	sarrier Loads (k/ft)(both sides)	0.836 MI	0.836 kdf	0.836 kH	0.836 kH	0.836 Mf	0.836 kdf	0.836 Mf	0.836 kH	0.836 Mf
Reaction per lane (END BENT) Track load (END BENT) Track load (END BENT) Track load (END BENT) Track load (END BENT) Track load (END BENT) Track load (END BENT) Track load (END BENT) Track load (END BENT) Track load (END BENT) Track load (END BENT) Track load (END BENT) Track load (END BENT) Track load (END BENT) Track load (END BENT) Track load (END BENT) Track load (END BENT) Track load (END BENT) Track load (END BENT) Track load (END BENT) END END (END END END END END END END (END END END END END END END END END END	Dead Load		7 2 2 2 2 2	1	10.00	17.97	3	48.04	147.4 15	1.24.7.1	1747 6
Reduction fractor for Substructure 0.9 Impact functor for Substructure 1.0 Interior for Substructure 1.0 Truck load 173.1 k 62.2 k 60.3 k 58.4 k 56.6 k 54.8 k 57.3 k Truck load 173.1 k 168.0 k 162.8 k 157.8 k 157.8 k 147.9 k 143.0 k Reaction per lane (PIER)		Beam Load (Pier)	931.2 k	667.4 k	525.9 k	453.4 k	361.3 k	325.6 k	294.7 k	269.5 k	248.4 k
Feaction per lane (EVD BENT)		Reduction factor Impact factor for Substructure	0.9								
Lane load 53.3 k 48.0 k 44.4 k 41.9 k 40.0 k 38.5 k 37.3 k Reaction per lane (PIER)	LL Reaction per	r lane (END BENT) Truck load	64.1 k	62.2 k	60.3 k	58.4 k	56.6 k	26. 28.	53.0 k	51.2 k	49.4 k
Reaction per lane (PIER)		Lanc load	53.3 k	48.0 k	44.4 k	41.9 k	40.0 k	38.5 k	37.3 k	36.3 k	35.5 k
Truck load (91ER)	Total Live Load		173.1 k	168.0 k	162.8 k	157.8 k	152.8 k	147.9 k	143.0 K	138.2 k	133,4 k
Lanc load (PIER)	LL Reaction per		4 7 37	18 0	12 59	41.09	4 (0)	1925	11 95	79.65	44.0 %
Superstructure Load (END BENT) 814.8 k 677.7 k 601.9 k 650.6 k 511.0 k 456.8 k 4		Lanc load	80.6k	45.69	62.8	57.7 k	53.9%	51.0 k	48.6 k	46.7 k	45.0 k
Superstructure Load (END BENT) 814.8 k 677.7 k 601.9 k 560.6 k 511.0 k 486.8 k 466.5 k Superstructure Load (PIER) 1206.9 k 914.3 k 753.6 k 675.4 k 582.2 k 539.4 k 504.5 k Annice Load Capacity of Piles 260.0 k 4	Total Live Load		217.5 k	188.7 k	169.6 k	163.9 k	159.7 k	155.6 k	151.6 k	147.5 k	143.6 k
Superstructure Load (IPIER) 130 Ft 130 St 143 K 144					0 10	4000	10113	10 707	1.5 479	440.01	422.7 5
Maximum pile spacing 13.0 Fr. Service Load Capacity of Piles 260.0 k n of Ext. pile from coping at End BearPier 4.0 Fr. 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	Sope	Superstructure Load (PIER)	1206.9 k	914.3 k	753.6 k	675.4 k	582,2 k	539.4 k	504.5 k	475.2 k	450.1 k
204 4 4 4 4 4 4 4 4 5 5 5 5 5 6 750 k 140 k 128 k 122 k 241 k 229 k 188 k 169 k 146 k 135 k	Ecundation	Maximum pile spacing envice Load Capacity of Piles	13.0 Ft. 260.0 k								
5 4 4 4 4 4 4 4 4 4 4 204 1204 1204 1204	LOGROOD of CAL, pro-	the Required For END BENT	4	4	4	4	4	4	4	4	4
2041: 169 k 150 k 140 k 128 k 122 k 241 k 229 k 188 k 168 k 146 k 135 k	Numb	er of Piles Required For PITIR	v	শ	4	4	4	*	4	4	4
241 k 229 k 188 k 169 k 146 k 135 k	Servi	ice Design Load (END BENT)	204 k	169 k	150 k	140 k	128 k	122 k	117 k	112 k	108 €
		Service Design Load (PIER)	241 k	229 k	188 k	169 k	146 k	135 k	126 k	119 k	113 K

FOUNDATION LOADS on DRILLED SHAFT	FOUNDATION LOADS on DRILLED SHAFT frail design/consembysi/shamaines-1.2.4/Type B Bridger 2 and 3.taj/SUPER COMP As one consequence of the conseq		Preparation of Engineering Appendix For GRR/SEIS Copps of Engineers, Jacksonville, Florida	Done by, M. LeConne
	Resignices carelysis Alamatica - 1.2.4 (Type B Bridges 2 and 3.24)SUTER COMP. See Alamatica - 1.2.4 (Type B Bridges 2 and 3.24)SUTER COMP. Alamatica - 1.2.4 (Type B Bridges 2 and 3.24)SUTER COMP.	Alternatives 1, 2 & 4 (Bridges 2 & 3)	FOUNDATION LOADS on DRILLED SHAFT	Checked by: C. Ll
Pesignicos-analyse/alternatives-1.2.4(Type B Bridges 2 and 3.48)50 PER COMP	Minushas of Jame 3	supa/Tamiami-Trail/design/cos	permission/alternatives-1,2.4/(Type B Bridges 2 and 3.48)5UPER COMP	November 29, 2000

Corps	Preparation of Engineers, Jacksonville, Florida	Jacksonville, 1	r CRRISELS Florida				Done by.	Done by. M. LeCome		
Alternatives 1, 2 & 4 FO	FOUNDATION LOADS on DRILLED SHAFT	NLOADS	on DRILLE	ED SHAFT			Checked by: C. Li	c. u		
STRUCT Design Tamini Trail design/consembysis/shamaires-1.2.4/Type B Bridges 2 and 3.48/SUTER COMP	1.2.4\Type B Bro	iges 2 and 3.xls]S	UPER COMP				Ŋ	November 29, 2000	000	1 40
Bridge Width 43 08 Ft.	ž	Number of lanes	6		Numb	er of Florida I	Number of Florida Double Tee -	9		
Number of Spans	s 4 spans	S spans	sueds 9	7 spans	8 spans	9 spans	10 spans	11 spans	12 spans	13 spans
Beam Type		Ħ	Ħ	Ħ	П	=	=	п	п	п
Beam Weight (k/ft)	0	0.583 Mf	0.583 kJf	0.583 kdf	0.384 kH	0.384 kJf	0.384 kdf	0.384 kdf	0.384 MF	0.384 kif
Number of Beams	5 beams	5 beams	4 beams	4 beams	4 beans	4 beams	4 beams	4 beams	4 beams	4 beams
Span Length (ft)	17	69,40 Ft.	58.33 Ft.	50.43 Ft.	44.50 Ft.	39.89 Ft.	36.20 Ft.	33.18 H.	30.67 Ft.	28.54 Ft.
Beam Span (ft)	84.00 Ft.	67,40 Ft.	56.33 Ft.	48,43 Ft.	42.50 Ft.	37.89 Ft.	34.20 Ft.	31.18 Ft.	28.67 Ft.	26.54 Ft.
Bridge Deck Thickness (m)	8.50 in.	8.50 in.	8.50 in.	8.50 in.	8.50 ii.	8.50 in	8.50 in.	8.50 in.	8.50 in.	8.50 in.
Comp. Loads (ksf)	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf
Barrier Loads (krf0(both sides)	0.836 kdf	0.836 kIf	0.836 kH	0.836 kH	0.836 Mf	0.836 kH	0.836 Mf	0.836 Mf	0.836 Mf	0.836 Mf
Dead Load	400.7 5	13751	346.74	49.086	25.00	25	3 1 151	138.54	128.0 %	11911
Bean Load (Pier)		675.2 k	\$33.5 k	461.2 k	371.6 k	333.1 k	302.3 k	277.1 ₺	256.1 k	238.3 k
Live Load Reduction factor Impact factor for Substructure	0.9									
I.L. Reaction nor lane (END BENT)										
Truck load Lane load	1 64,2 k	62.3 k 48.2 k	60.5 k 44.7 k	58.7 k 42.1 k	56.9 k 40.2 k	55.2 k 38.8 k	53.4 k 37.6 k	51.7 k 36.6 k	50.1 k 35.8 k	48.5 k 35.1 k
Total Live Load (END BENT)	173.3 k	168.3 k	163.3 k	158.4 k	153.6 k	148.9 k	144.3 k	139.7 k	135.2 k	130.8 k
I.I. Reaction per lane (PIER) Truck load	1 65.5 k	46.53 40.54	62.4k	46.00	59.4 %	58.0 k	36.5 k	55.1 k	53.7 k	52,418
Total Live Load (PIER)		190.11	171.0 k	164.4 k	160.4 k	156.5 k	152.6 k	148.8 k	145.1 k	141.4 k
Total Load Superstructure Load (END BENT) Superstructure I oad (PHER)) 848.2 k) 1235.8 k	711.0 k 942.8 k	635.2 k 782.0 k	594.2 k 703.2 k	544 6 k 609.5 k	520.6 k 567.1 k	500.6 k 532.4 k	483.4 k 503,4 k	458.4 k 478.7 k	455.1 k 457.3 k
Foundation Maximum pile spacing Location of Ext. shaft from coping at End Bern Number of Piles Required For END BENT	6.0	m	Ε.	m	m	6 .1	m i	rs. I	m	m
Number of Piles Required For PIER Service Design Load (END BENT)		2 237 k	2 212 k	2 198 k	182 k	2 174 k	2 167 k 366 k	161 k	2 156 k	2 152 k
Service Design Load (PIER)	1 618 k	471 k	391 K	3.7CF	3/C/V	# ±07	3 007	A 202	4 CC7	4 500

Corps of Engineers, Jacksonville, Florida

Done by: M. LeConite

November 29, 2000

Checked by: C. Li

Alternatives 1, 2 & 4

(Bridges 2 & 3)

INTERMEDIATE BENTS / PIERS

STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternatives-1,2,4\[Type B Bridges 2 and 3.xls]SUPER_COMP

Intermediate Bent Section

Pier Section (2 Drilled Shafts)

Foundation Type	18 in. Pile	24 in. Pile	36 in. Shaft
Estimated Pile Embedment Length	19 ft.	19 ft.	14 ft.
Pile Length Above Ground	8 ft.	8 ft.	8 ft.
Total Length of Pile	27 ft.	27 ft.	22 ft.
Estimated Cost of One Pile/Drilled Shaft	\$891	\$1,242	\$4,840
Bent cap cross sectional area	9.0 sq.ft	9.0 sq.ft	12.0 sq.ft
Bent Cap Length	43 ft.	43 ft.	43 ft.
Total Concrete Volume	14.4 CY	14.4 CY	19.1 CY
Reinforcement at 145 lbs/CY	2082 lbs	2082 lbs	2776 lbs
Estimated Cost of Bent Cap	\$6,897	\$6,897	\$9,196

PRESTRESSED PILES	18 in.	24 in.	DRILLED SHAFT	36 in.
Number of test loads per bridge	2 ea.	2 ea.	Number of test loads per bridge	1 ca.
-			Core (Shaft Excavation)	
			Length of temporary casing	
Est, total cost of test piles w/ dynamic load test per bridge	\$13,440	\$13,440	% of casing splice	
			Excavation, unclassified shaft	
% of pile splice	10%	10%	Drilled shaft sidewall overreaming	
% of pile hole preformed	100%	100%	Excavation, unclassified extra depth	

Number	Number e	of Piles	Number of	Total Co	st of Piles	Total Cost of	Tot	al Estimated	Cost
of	Requi	red	Drilled Shafts	per Be	nt / Pier	Drilled Shaft	15344	of ONE Pic	er
Spans	18 in.	24 in.	36 in.	18* Pile	24" Pile	per Pier	18" Pile	24" Pile	36" Shaft
4	9	5	2	\$14,398	\$11,775	\$26,347	\$21,295	\$18,672	\$35,543
5	7	4	2	\$11,074	\$9,196	\$22,180	\$17,971	\$16,093	\$31,376
6	6	4	2	\$9,300	\$8,524	\$19,680	\$16,197	\$15,421	\$28,876
7	5	4	2	\$7,750	\$8,076	\$18,013	\$14,647	\$14,973	\$27,209
8	4	4	2	\$6,328	\$7,756	\$16,823	\$13,225	\$14,653	\$26,019
9	4	4	2	\$6,088	\$7,516	\$15,930	\$12,985	\$14,413	\$25,126
10	4	4	2	\$5,901	\$7,329	\$15,236	\$12,798	\$14,226	\$24,431
11	4	4	2	\$5,752	\$7,180	\$14,680	\$12,649	\$14,077	\$23,876
12	4	4	2	\$5,630	\$7,058	\$14,225	\$12,527	\$13,955	\$23,421
13			2			\$13,847	200		\$23,043
				-		-		-	
-		-		_			-		

Corps of Engineers, Jacksonville, Florida

Alternatives 1, 2 & 4 (Bridges 2 & 3)

END BENTS

Done by: M. LeComic

Checked by: C. Li

November 29, 2000

	Foundation Type	18 in. Pile	24 in, Pile	36 in. Shaft
Estimate	d Pile Embedment Length	19 ft.	19 ft.	14 ft.
P	ile Length Above Ground	8 ft.	8 ft.	8 ft.
	Total Length of Pile	27 ft.	27 ft.	22 ft.
Estimated Cost	of One Pile/Dritted Shaft	\$891	\$1,242	\$4,840
Bei	nt cap cross sectional area	7.5 sq.ft	7.5 sq.ft	12.0 sq.ft
	Bent Cap Length	43 ft.	43 ft.	43 ft.
	Total Concrete Volume	12.0 CY	12.0 CY	19.1 CY
Reinforcement at	145 lbs/CY	1735 lbs	1735 lbs	2776 lbs
	Estimated Cost of Bent Can	\$5.747	\$5.747	\$9.196

I:\STRUCT\Design\Tamami-Trail\design\cost-analysis\alternatives-1,2,4\[Type B Bridges 2 and 3.xls]SUPER_COMP

PRESTRESSED PILES	18 in.	24 in.	DRILLED SHAFTS	36 in.
			Core(Shaft Excavation)	
			Length of temporary casing	
			Percentage of casing splice	
1			Excavation, unclassified shaft	
% of pile splice	10%	10%	Drilled shaft sidewall overreaming	
% Pile hole preformed	100%	100%	xcavation, unclassified extra depth	

Number	Numbe	er of Piles	Number of	Total Co	st of Piles	Total Cost of	То	tal Estimated	Cost
of	Req	quired ^l	Drilled Shafts ²	per Be	nt / Pier	Drilled Shaft		of ONE Pic	r
Spans	18 in.	24 in.	36 in.	18" Pile	24" Pile	per Pier	18" Pile	24" Pile	36" Shaf
4	8	6	5	\$8,816	\$8,754	\$24,200	\$27,951	\$27,889	\$46,783
5	7	6	5	\$7,714	\$8,754	\$24,200	\$24,181	\$25,221	\$44,115
6	7	6	5	\$7,714	\$8,754	\$24,200	\$24,181	\$25,221	\$44,115
7	6	6	5	\$6,612	\$8,754	\$24,200	\$23,079	\$25,221	\$44,115
8	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	\$22,794	\$41,688
9	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	\$22,794	\$41,688
10	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	S22,794	\$41,688
11	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	\$22,794	\$41,688
12	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	\$22,794	\$41,688
13			5			\$24,200			\$41,688
				12					
			i						

¹Includes wingwall piles for Type IV, III, II beams.

²Includes wingwall drilled shafts for Type IV, III, II beams.

Corps of Engineers, Jacksonville, Florida

Alternatives 1, 2 & 4 (Bridges 2 & 3)

SUBSTRUCTURE & SUPERSTRUCTURE ALTERNATIVES COMPARISON

Checked by: C. Li November 29, 2000

STRUCT\Design\Tamiami-Trail\design\cost-analysis\u00e9ulternatives-1,2,4\u00e9Type B Bridges 2 and 3.xls|SUPER_COMP

ADJU	STED SPAN	LENGTH	Number	C	ost of Substruc	ture	Cos	at of Superstru	cture	Total	Cost of Str	ucture
18 in.	24 in.	36 in.	of	18 in.	24 in.	36 in.	18 in.	24 in.	36 in.	18 in.	24 in.	36 in.
Pile	Pile	Shaft	Piers	Pile	Pile	Shaft	Pile	Pile	Shaft	Pile	Pile	Shaft
84.88 Ft.	85.25 Ft.	86.00 Ft.	3	\$119,787	\$111,794	\$200,195	\$296,944	\$298,256	\$300,880	\$416,731	\$410,050	\$501,075
68.20 Ft.	68.60 Ft.	69.40 Ft.	4	\$120,245	\$114,813	\$213,734	\$269,271	\$270,851	\$274,009	\$389,516	\$385,664	\$487,743
57.08 Ft.	57.50 Ft.	58.33 Ft.	5	\$129,346	\$127,546	\$232,610	\$247,508	\$249,315	\$252,928	\$376,854	\$376,861	\$485,538
49.14 Ft.	49.57 Ft.	50.43 Ft.	6	\$134,039	\$140,279	S251,486	\$248,592	\$250,760	\$255,096	\$382,631	\$391,039	\$506,582
43.19 Ft.	43.63 FC."	44:50 Ft.		"S133;878 "	* ST48,158***	* \$265,508 *	\$231,710	\$234,058	\$238,752	\$365,588	\$382,215	\$504,260
38.56 Ft.	39.00 Ft.	39.89 Ft.	- 8	\$145,183	\$160,891	5284,383	5232,716	\$235,399	\$240,764	\$377,899	\$396,290	\$525,148
34.85 Ft.	35.30 Ft.	36.20 Ft.	9	\$156,488	\$173,624	\$303,259	S233,722	\$236,740	\$242,776	\$390,210	\$410,364	\$546,035
31.82 Ft.	32.27 Ft.	33.18 Ft.	10	\$167,793	\$186,357	\$322,135	S234,728	\$238,082	\$244,788	\$402,521	\$424,438	\$566,923
29.29 Ft.	29.75 Ft.	30.67 Ft.	11	\$179,097	\$199,089	\$341,011	\$235,734	\$239,423	\$246,800	\$414,832	\$438,512	\$587,811
		28.54 Ft.	12			\$359,887			\$248,812			\$608,699
	18 in. Pile 84.88 Ft. 68.20 Ft. 57.08 Ft. 49.14 Ft. 43.19 Ft. 38.56 Ft. 34.85 Ft. 31.82 Ft.	18 in. Pile 24 in. Pile 84.88 Ft. 85.25 Ft. 68.20 Ft. 68.60 Ft. 57.08 Ft. 49.14 Ft. 49.57 Ft. 43.19 Ft. 43.63 Ft. 38.56 Ft. 39.00 Ft. 34.85 Ft. 35.30 Ft. 31.82 Ft. 32.27 Ft.	Pile Pile Shaft 84.88 Ft. 85.25 Ft. 86.00 Ft. 68.20 Ft. 68.60 Ft. 69.40 Ft. 57.08 Ft. 57.50 Ft. 58.33 Ft. 49.14 Ft. 49.57 Ft. 50.43 Ft. 43.19 Ft. 43.63 Fc. 44.50 Ft. 38.56 Ft. 39.00 Ft. 39.89 Ft. 34.85 Ft. 35.30 Ft. 36.20 Ft. 31.82 Ft. 32.27 Ft. 33.18 Ft. 29.29 Ft. 29.75 Ft. 30.67 Ft.	18 in. 24 in. 36 in. of Pile Shaft Piers 84.88 Ft. 85.25 Ft. 86.00 Ft. 3 68.20 Ft. 68.60 Ft. 69.40 Ft. 4 57.08 Ft. 57.50 Ft. 58.33 Ft. 5 49.14 Ft. 49.57 Ft. 50.43 Ft. 6 43.19 Ft. 43.63 Ft. 44.50 Ft. 7 38.56 Ft. 39.00 Ft. 39.89 Ft. 8 34.85 Ft. 35.30 Ft. 36.20 Ft. 9 31.82 Ft. 32.27 Ft. 33.18 Ft. 10 29.29 Ft. 29.75 Ft. 30.67 Ft. 11	18 in. 24 in. 36 in. of 18 in. Pile Pile Shaft Piers Pile 84.88 Ft. 85.25 Ft. 86.00 Ft. 3 \$119,787 68.20 Ft. 68.60 Ft. 69.40 Ft. 4 \$120,245 57.08 Ft. 57.50 Ft. 58.33 Ft. 5 \$129,346 49.14 Ft. 49.57 Ft. 50.43 Ft. 6 \$134,039 43.19 Ft. 43.63 Ft. 7 \$133,878 38.56 Ft. 39.00 Ft. 39.89 Ft. 8 \$145,183 34.85 Ft. 35.30 Ft. 36.20 Ft. 9 \$156,488 31.82 Ft. 32.27 Ft. 33.18 Ft. 10 \$167,793 29.29 Ft. 29.75 Ft. 30.67 Ft. 11 \$179,097	18 in. 24 in. 36 in. of Piers 18 in. 24 in. Pile 84.88 Ft. 85.25 Ft. 86.00 Ft. 3 \$119,787 \$111,794 68.20 Ft. 68.60 Ft. 69.40 Ft. 4 \$120,245 \$114,813 57.08 Ft. 57.50 Ft. 58.33 Ft. 5 \$129,346 \$127,546 49.14 Ft. 49.57 Ft. 50.43 Ft. 6 \$134,039 \$140,279 43.19 Ft. 43.63 Ft. 44.50 Ft. 7 \$133,878 \$148,158 38.56 Ft. 39.00 Ft. 39.89 Ft. 8 \$145,183 \$160,891 34.85 Ft. 35.30 Ft. 36.20 Ft. 9 \$156,488 \$173,624 31.82 Ft. 32.27 Ft. 33.18 Ft. 10 \$167,793 \$186,357 29.29 Ft. 29.75 Ft. 30.67 Ft. 11 \$179,097 \$199,089	18 in. 24 in. 36 in. of 18 in. 24 in. 36 in. Pile Pile Shaft Piers Pile Pile Shaft 84.88 Ft. 85.25 Ft. 86.00 Ft. 3 \$119,787 \$111,794 \$200,195 68.20 Ft. 68.60 Ft. 69.40 Ft. 4 \$120,245 \$114,813 \$213,734 57.08 Ft. 57.50 Ft. 58.33 Ft. 5 \$129,346 \$127,546 \$232,610 49.14 Ft. 49.57 Ft. 50.43 Ft. 6 \$134,039 \$140,279 \$251,486 43.19 Ft. 43.63 Ft. 7 \$133,878 \$148,158 \$265,508 38.56 Ft. 39.00 Ft. 39.89 Ft. 8 \$145,183 \$160,891 \$284,383 34.85 Ft. 35.30 Ft. 36.20 Ft. 9 \$156,488 \$173,624 \$303,259 31.82 Ft. 32.27 Ft. 33.18 Ft. 10 \$167,793 \$186,357 \$322,135 29.29 Ft. 29.75 Ft. 30.67 Ft. 11 \$179,097	18 in. 24 in. 36 in. of Pile 18 in. 24 in. 36 in. 18 in. Pile Pile Shaft Pile Pile Shaft Pile 84.88 Ft. 85.25 Ft. 86.00 Ft. 3 \$119,787 \$111,794 \$200,195 \$296,944 68.20 Ft. 68.60 Ft. 69.40 Ft. 4 \$120,245 \$114,813 \$213,734 \$269,271 57.08 Ft. 57.50 Ft. 58.33 Ft. 5 \$129,346 \$127,546 \$232,610 \$247,508 49.14 Ft. 49.57 Ft. 50.43 Ft. 6 \$134,039 \$140,279 \$251,486 \$248,592 43.19 Ft. 43.63 Ft. 7 \$133,878 \$148,158 \$265,508 \$231,710 38.56 Ft. 39.00 Ft. 39.89 Ft. 8 \$145,183 \$160,891 \$284,383 \$232,716 34.85 Ft. 35.30 Ft. 36.20 Ft. 9 \$156,488 \$173,624 \$303,259 \$233,722 31.82 Ft. 32.27 Ft. 30.67 Ft. 10 \$	18 in. 24 in. 36 in. of Pile 18 in. 24 in. 36 in. 18 in. 24 in. Pile Pile Shaft Pile Pile Shaft Pile Pile 84.88 Ft. 85.25 Ft. 86.00 Ft. 3 \$119,787 \$111,794 \$200,195 \$296,944 \$298,256 68.20 Ft. 68.60 Ft. 69.40 Ft. 4 \$120,245 \$114,813 \$213,734 \$269,271 \$270,851 57.08 Ft. 57.50 Ft. 58.33 Ft. 5 \$129,346 \$127,546 \$232,610 \$247,508 \$249,315 49.14 Ft. 49.57 Ft. 50.43 Ft. 6 \$134,039 \$140,279 \$251,486 \$248,592 \$250,760 43.19 Ft. 43.63 Ft. 7 \$133,878 \$148,158 \$265,508 \$231,710 \$234,058 38.56 Ft. 39.00 Ft. 39.89 Ft. 8 \$145,183 \$160,891 \$284,383 \$232,716 \$235,399 34.85 Ft. 35.30 Ft. 36.20 Ft. 9 \$156,488 <	18 in. 24 in. 36 in. of Pile 18 in. 24 in. 36 in. 18 in. 24 in. 36 in. 18 in. 24 in. 36 in. Pile Pile Shaft Pile Shaft 84.88 Ft. 85.25 Ft. 86.00 Ft. 3 \$119,787 \$111,794 \$200,195 \$296,944 \$298,256 \$300,880 68.20 Ft. 69.40 Ft. 4 \$120,245 \$114,813 \$213,734 \$269,271 \$270,851 \$274,009 57.08 Ft. 57.50 Ft. 58.33 Ft. 5 \$129,346 \$127,546 \$232,610 \$247,508 \$249,315 \$252,928 49.14 Ft. 49.57 Ft. 50.43 Ft. 6 \$134,039 \$140,279 \$251,486	18 in. 24 in. 36 in. of Pile 18 in. 24 in. 36 in. 18 in. 24 in. 36 in. 18 in. Pile Shaft Spage Spage	18 in. 24 in. 36 in. of 18 in. 24 in. 36 in. 18 in. 24 in. 9ile Pile Pile

SUMMARY OF MOST ECONOMICAL ALTERNATIVES FOR EACH SPAN ARRANGEMENT:

Number of Spans	Estimated Cost	Foundation Alternative	Superstructure Alternative	Number of Spans	Number of Beams	Number of Piles or Drilled Shafts	Total Length of Piles or Drilled Shafts	Number of Test Piles	Total Length of Test Piles
4	\$410,050	24 in.	Type IV	4	5	25	675 ft.	2	84 ft
5	\$385,664	24 in.	Type III	5	5	26	702 ft	2	84 ft
6	\$376,854	18 in.	Type III	6	4	42	1134 ft	2	84 ft
7	\$382,631	18 in.	Type III	7	4	40	1080 ft	2	84 ft
8	\$365,588	18 in.	Type II	8	4	38	1026 ft	2	84 ft
9	\$377,899	18 in.	Type II	9	4	42	1134 ft	2	84 ft
10	\$390,210	18 in.	Type II	10	4	46	1242 ft	2	84 ft
11	\$402,521	18 in.	Type II	11	4	50	1350 ft	. 2	84 ft
12	\$414,832	18 in.	Type II	12	4	54	1458 ft	2	84 ft
13	S608,699	36 in.	Type II	13	4	34	748 ft		

\$365,588 <--- Minimum

RESULT OF COST COMPARISON STUDY:

Most economical superstructure type: Type II Most economical substructure type: 18 in.

Optimum Span Arrangement: 8 spans at 43.19 FT.

Total bridge length: 345.50 Ft.

Total number of beams: 32

Total length of beams: 1382.00 Ft.

Number of piles or drilled Shafts: 38

Length of Piles or drilled Shafts: 1026.00 Ft.

Corps of Engineers, Jacksonville, Florida

PBS,

Done by: M. LeComte

Checked by: C. Li

Alternatives 1, 2 & 4 (Bridges 2 & 3)

ESTIMATE OF PROBABLE CONSTRUCTION COSTS

:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternatives-1,2,4\[Type B Bridges 2 and 3.xls]SUPER COMP

November 29, 2000

Item	Quantity	Units	Unit Price	Δ	mount
SUPERSTRUCTURE:					
Concrete	367.7	CY	\$310	\$	113,994
Reinforcing Steet	75383	LBS	\$0.45	\$	33,922
Bridge Floor Grooving	1536	SY	\$2.50		\$3,839
Traffic Railing Barrier	691.0	FT	\$35	\$	24,185
Expansion Joints ³	86.2	FT	\$84		\$7,238
Type II Beam	1382.0	FT	\$54		74,628
Neoprene Bearing Pads	7.002	CY	S425		\$2,976
		Superstr	ucture Subtotal	\$.	260,782
SUBSTRUCTURE:					
Concrete	158.8	CY	\$415	5	65,916
Reinforcing Steet ²	23031	LBS	\$0.45	9	10,364
Pile Hole, Preformed	38	EA	\$200		\$7,600
Test Piles	84	Ft.	\$160		13,440
18 in, Prestressed Concrete Piles (F & I)	1026	Ft.	\$33	1	33,858
Pile Splices	4	EA	\$110		\$440
Drilled shaft		LF	\$220		
Test load for drilled shaft		EA	\$50,000		
Core (Shaft Excavation)		LF			
Temporary casing		LF			
Casing splice		EA			
Excavation, unclassified shaft		LF			
Drilled shaft sidewall overreaming		LF			
Excavation, unclassified extra depth		LF			
		Substr	ructure Subtotal		S131,618
		Construction	on Cost Subtotal		\$392,400
Mobilization (5% of Construction Cost)	1	LS		\$	19,620
Contingency (15% of Construction Cost)	1	LS		\$	58,860
	7	Fotal Cons	truction Cost		\$470,880
		Deck Squ	are Footage (Ft.)		14,885
			Square Foot		\$31.63/sf

¹Ratio of reinforcement to superstructure concrete:

205 Lbs/CY.

²Ratio of reinforcement to substructure concrete:

145 Lbs/CY.

³Number of expansion piers:

2

PERMANENT & TEMPORARY STRUCTURES FOR ALTERNATIVES 1 & 2 USING NORTH DETOUR ESTIMATE OF PROBABLE CONSTRUCTION COSTS Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida COST SUMMARY

:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 1&2 northdetour\[summarynorthdetour.xls]summa

by: F. Ornarli	by: C. Li	November 29, 2000
 Done b	Checked by:	Ñ.

		Area	Unit Cost	Cost per Bridge	QTY	Total Cost
	Items	Sq. Ft.	\$/Sq.Ft.	s	Ea.	\$
APPROACH BRIDGES	(For constr. of first 2 bridges)	50,400	93.74	\$4,724,522	4	\$18,898,088
APPROACH BRIDGES	(For constr. of next 2 bridges)	50,400	38.98	\$1,964,522	4	\$7,858,088
TEMPORARY BRIDGES	(For constr. of first 2 bridges)	48,000	6.66	\$4,796,437	2	\$9,592,875
TEMPORARY BRIDGE ²	(For constr. of next 2 bridges)	48,000	36.9	\$1,771,437	2	\$3,542,875
PERMANENT BRIDGES ³ (Bridges 1 & 4)	(Bridges 1 & 4)	20,852	77.0	\$1,605,983	2	\$3,211,965
PERMANENT BRIDGES ³ (Bridges 2 & 3)	(Bridges 2 & 3)	15,144	77.0	\$1,165,583	2	\$2,331,165
Removal of APPROACH BRIDGES	RIDGES	50,400	12	\$604,800	8	\$4,838,400
Removal of TEMPRORARY BRIDGES	Y BRIDGES	48,000	12	\$576,000	4	\$2,304,000

¹ Precast slab units and barrier walls are reused. Only installation cost of these items are included.

\$52,577,456

TOTAL

The total construction cost of the temporary bridges for MOT is based on the following assumptions:

- The total cost above does not include, however, the cost due to longer construction period by constructing 2 bridges at a time, not 4 1) Two permanent bridges will be built at the same time, which requires 2 temporary bridges. If all 4 permanent bridges are to be built at the same time, cost of additional 2 temporary steel truss bridges need to be considered
- Superstructure of approach bridges and temporary steel truss bridges will be reused. Only installation cost of the superstructure is considered for the next 2 bridges.
- 3) Salvaged value of temporary steel truss bridges is not considered in the total cost above.

² Temporary steel truss superstructure is reused. Only installation cost of the superstructure is included.

³ Top down construction is considered due to limited construction area (Constr. Cost is increased by 20%).

Corps of Engineers, Jacksonville, Florida

Done by: F. Omarli

Checked by: C. Li

November 29, 2000

APPROACH BRIDGE

PERMANENT & TEMPORARY STRUCTURES FOR ALTERNATES 1 & 2 USING NORTH DETOUR

BEAM SPACING vs. DESIGN SPAN

E\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 1&2 northdetour\[summarynorthdetour,xls]summa

SUPERSTRUCTURE OF APPROACH BRIDGE

Bridge Width: 42.00 Ft.

1200.00 Ft. Bridge Length:

24.00 in. Precast slab thickness:

24.00 Ft. Roadway width:

Shld. Width on each side: 4.00 Ft.

Width of pile cap: 3:50 Ft.

Depth of pile cap: 3.00 Ft.

SUBSTRUCTURE OF APPROACH BRIDGE

Cap width: 3.50 Ft.

Cap depth: 3.00 Ft. Drilled shaft spacing: 30.00 Ft.

Drilled shaft length: 29.00 Ft.

SUPERSTRUCTURE OF TEMPORARY BRIDGE

Bridge Width: 32.00 Ft.

1500.00 Ft.

Lightweight slab thickness:

Span length:

Cap width: 4.00 Ft.

Cap depth: 3.00 Ft.

No. of drilled shaft per pier:

SUPERSTRUCTURE OF PERMANENT BRIDGE

Bridge Width:

32.00 Ft.

Bridge Length:

1500.00 Ft.

Lightweight slab thickness: Span length: 30.00 Ft.

5.00 in.

SUBSTRUCTURE OF PERMANENT BRIDGE

Cap width: 4.00 Ft.

Cap depth:

3.00 Ft.

2

No. of drilled shaft per pier:

Drilled shaft length: 29.00 Ft.

Bridge Length:

5.00 in.

30.00 Ft.

SUBSTRUCTURE OF TEMPORARY BRIDGE

Drilled shaft length:

29.00 Ft.

Corps of Engineers, Jacksonville, Florida

PBS,

Done by: F. Ornarli

APPROACH BRIDGE

ESTIMATE OF PROBABLE CONSTRUCTION COSTS

Checked by: C. Li

PERMANENT & TEMPORARY STRUCTURES FOR ALTERNATIVES 1 & 2 USING NORTH DETOUR

November 29, 2000

I:\STRUCT\Design\Tamiami	-Trail'design\cost-analysis\alternative	e 1&2 northdetour\[summarynorthdetour.xls]summ	a
--------------------------	---	--	---

Item	Quantity	Units	Unit Price	Amount
SUPERSTRUCTURE:				
Class II Concrete (Superstructure)	0	CY	\$310.00	\$0
Reinforcing Steel - (Superstructure) ¹		LBS	\$0.45	\$0
Bridge Floor Grooving	5600	SY	\$2.50	\$14,000
Traffic Railing Barrier	2400.0	FT	\$35.00	\$84,000
Expansion Joints	0.0	FT	\$84.00	\$0
Precast Slab (24 in. thick)	3733.3	CY	\$750.00	\$2,800,000
Neoprene Bearing Pads	41.7	CF	\$425.00	\$17,708
		Super	structure Subtotal	\$2,915,708
SUBSTRUCTURE:				
Class II Concrete - (Substructure)	933	CY	\$415.00	\$387,333
Reinforcing Steel (Substructure) ²	135333	LBS	\$0.45	\$60,900
Pile Hole, Preformed	0	EA	\$200.00	\$0
Test Piles	0	Ft.	\$160.00	SO
Prestressed Concrete Piles (F & I)	0	Ft.	\$33.00	S0
Pile Splices	0	EA	\$110.00	SO
Drilled shaft	2378	LF	\$220.00	\$523,160
Test load for drilled shaft	1	EA	\$50,000.00	\$50,000
Core(Shaft Excavation)	0	LF	\$0.00	\$0
Temporary casing	0	LF	\$0.00	\$0
Casing splice(Included in shaft price)	0	EA	\$0.00	\$0
Excavation, unclassified shaft	0	LF	\$0.00	\$0
Drilled shaft sidewall overreaming	o	LF	\$0.00	\$0
Excavation, unclassified extra depth	0	LF	\$0.00	\$0
		Sub	structure Subtotal	\$1,021,393
		Construc	ction Cost Subtotal	\$3,937,102
Mobilization (5% of Construction Cost)	1	LS		\$196,855
Contingency (15% of Construction Cost)	1	LS		\$590,565.25
		Total	Construction Cost	\$4,724,522
			uare Footage (Ft.)	50,400
		Cos	st Per Square Foot	\$93.74 /Sf
¹ Ratio of reinforcement	to superstructure concrete:	205	Lbs/CY.	
² Ratio of reinforcement	nt to substructure concrete:	145	Lbs/CY.	

Corps of Engineers, Jacksonville, Florida

PERMANENT & TEMPORARY STRUCTURES FOR ALTERNATIVES 1 & 2 USING NORTH DETOUR

ESTIMATE OF PROBABLE CONSTRUCTION COSTS

---,

Dooe by: F. Omarli

Checked by: C. Li
November 29, 2000

I:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 1&2 northdetour\[summarynorthdetour, xls]summa

APPROACH BRIDGE

(REUSE OF DECK)

Item	Quantity	Units	Unit Price	Amount
SUPERSTRUCTURE:				
Class II Concrete (Superstructure)	0	CY	\$310.00	SO
Reinforcing Steel (Superstructure)1	0	LBS	\$0.45	SO
Bridge Floor Grooving	5600	SY	\$2.50	\$14,000
Traffic Railing Barrier	2400.0	FT	\$10.00	\$24,000 (Installation)
Expansion Joints	0.0	FT	\$84.00	\$O
Precast Slab (24 in. thick)	3733.3	CY	\$150.00	\$560,000 (Installation)
Neoprene Bearing Pads	41.7	CF	\$425.00	\$17,708
		5	Superstructure Subtotal	\$615,708
SUBSTRUCTURE:				
Class II Concrete (Substructure)	933	CY	\$415.00	\$387,333
Reinforcing Steel (Substructure)2	135333	LBS	\$0.45	\$60,900
Pile Hole, Preformed	0	EA	\$200.00	\$0
Test Piles	0	Ft.	\$160.00	\$0
Prestressed Concrete Piles (F & 1)	0	Ft.	\$33.00	\$0
Pile Splices	0	EA	\$110.00	\$0
Drilled shaft	2378	LF	\$220.00	\$523,160
Test load for drilled shaft	1	EA	\$50,000.00	\$50,000
Core(Shaft Excavation)	0	LF	\$0.00	SO SO
Temporary casing	0	LF	\$0.00	SO
Casing splice(Included in shaft price)	0	EA	\$0.00	SO SO
Excavation, unclassified shaft	0	LF	\$0.00	SO
Drilled shaft sidewall overreaming	0	LF	\$0.00	SO
Excavation, unclassified extra depth	0	LF	\$0.00	SO
			Substructure Subtotal	\$1,021,393
		Con	nstruction Cost Subtotal	\$1,637,102
Mobilization (5% of Construction Cost)	1	LS		\$81,855
Contingency (15% of Construction Cost)	l.	LS		\$245,565.25
			Total Construction Cost	\$1,964,522
		De	ck Square Footage (Ft.) Cost Per Square Foot	50,400 \$38.98 /Sf
¹ Ratio of reinforcement to st	aperstructure concrete:	205	Lbs/CY.	
² Ratio of reinforcement to	substructure concrete:	145	Lbs/CY.	

Corps of Engineers, Jacksonville, Florida

PBS,

Done by: F. Ornarli

TEMPORARY BRIDGE

ESTIMATE OF PROBABLE CONSTRUCTION COSTS

Checked by: C. Li

PERMANENT & TEMPORARY STRUCTURES FOR ALTERNATIVES 1 & 2 USING NORTH DETOUR

November 29, 2000

I:\STRUCT\Design\Tamiami-Trail\design\cost-an	alysis'alternative 1&2 northdetour\[summarynorthdetour	.xls]summa
Item	Quantity	Units

Item	Quantity	Units	Unit Price	Amount
SUPERSTRUCTURE:				
Class II Concrete (Superstructure)	741	CY	\$310.00	\$229,630
	151852	LBS	\$0.45	\$68,333
Bridge Floor Grooving	5333	SY	\$2.50	\$13,333
Temporary Steel Truss Superstructure	1.0	LS	\$3,000,000	\$3,000,000
		Supers	tructure Subtotal	\$3,311,296
SUBSTRUCTURE:				
Class II Concrete (Substructure)	725	CY	\$415.00	\$301,013
Reinforcing Steel (Substructure) ²	105173	LBS	\$0.45	\$47,328
Pile Hole, Preformed	0	EA	\$200.00	SO.
Test Piles	0	Ft.	\$160.00	SO
Prestressed Concrete Piles (F & I)	0	Ft.	\$33.00	SO
Pile Splices	0	EA	\$110.00	\$0
Drilled shaft	2958	LF	\$220.00	\$650,760
Test load for drilled shaft	1	EA	\$50,000.00	\$50,000
Core(Shaft Excavation)	0	LF	\$0.00	\$0
Temporary casing	0	LF	\$0.00	\$0
Casing splice(Included in shaft price)	0	EA	\$0.00	\$0
Excavation, unclassified shaft	0	LF	\$0.00	\$0
Drilled shaft sidewall overreaming	0	LF	\$0.00	\$0
Excavation, unclassified extra depth	0	LF	\$0.00	\$0
		Subs	tructure Subtotal	\$1,049,101
		Construct	ion Cost Subtotal	\$4,360,398
Mobilization (5% of Construction Cost)	1	LS		\$218,020
Contingency (5% of Construction Cost)	1	LS		\$218,020
		Total (Construction Cost	\$4,796,437
5			are Footage (Ft.) Per Square Foot	48,000 \$99.9 /Sf
¹ Ratio of reinforcement to supers	tructure concrete:	205	Lbs/CY.	
2			w/////////////////////////////////////	

²Ratio of reinforcement to substructure concrete:

145 Lbs/CY.

Corps of Engineers, Jacksonville, Florida

PBS,

Done by: F. Ornarli

TEMPORARY BRIDGE (REUSE)

ESTIMATE OF PROBABLE CONSTRUCTION COSTS

Checked by: C. Li

PERMANENT & TEMPORARY STRUCTURES FOR ALTERNATIVES 1 & 2 USING NORTH DETOUR

1:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 1&2 northdetour\(summarynorthdetour.xts\)summa

November 29, 2000

Item	Quantity	Units	Unit Price	Amount	
SUPERSTRUCTURE:					
Class II Concrete (Superstructure)	741	CY	\$310.00	\$229,630	
Reinforcing Steel (Superstructure)	151852	LBS	\$0.45	\$68,333	
Bridge Floor Grooving	5333	SY	\$2.50	\$13,333	
Temporary Steel Truss Superstructure	1.0	LS	\$250,000	\$250,000 (Installation)
		Super	structure Subtotal	\$561,296	
SUBSTRUCTURE:					
Class II Concrete (Substructure)	725	CY	\$415.00	\$301,013	
Reinforcing Steel (Substructure) ²	105173	LBS	\$0,45	\$47,328	
Pile Hole, Preformed	0	EA	\$200.00	\$0	
Test Piles	0	Ft.	\$160.00	\$0	
Prestressed Concrete Piles (F & I)	0	Ft.	\$33.00	\$0	
Pile Splices	0	EA	\$110.00	\$0	
Drilled shaft	2958	LF	\$220.00	\$650,760	
Test load for drilled shaft	1	EA	\$50,000.00	\$50,000	
Core(Shaft Excavation)	0	LF	\$0.00	\$0	
Temporary casing	0	LF	\$0.00	\$0	
Casing splice(Included in shaft price)	0	EA	\$0.00	\$0	
Excavation, unclassified shaft	0	LF	\$0.00	\$0	
Drilled shaft sidewall overreaming	0	LF	\$0.00	\$0	
Excavation, unclassified extra depth	0	LF	\$0.00	\$0	
		Sub	structure Subtotal	\$1,049,101	
		Construc	tion Cost Subtotal	\$1,610,398	
Mobilization (5% of Construction Cost)	1	LS		\$80,520	
Contingency (5% of Construction Cost)	-1	LS		\$80,520	
		Total	Construction Cost	\$1,771,437	
			uare Footage (Ft.)	48,000	
		Cor	st Per Square Foot	\$36.90 /Sf	
# 0000 00 0000		205			

¹Ratio of reinforcement to superstructure concrete:

205 Lbs/CY.

²Ratio of reinforcement to substructure concrete:

145 Lbs/CY.

Corps of Engineers, Jacksonville, Florida

Done by: M. LeComte

Alternatives 1 & 2 (Bridges 1 & 4)

BRIDGE AND SPAN LENGTHS

Checked by: C. Li

ASTRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 1&2 northdetour\[Type A Bridges 1 and 4 TOPD

November 29, 2000

Determine Bridge Length based on hydraulic opening:

Hydraulic Opening Width at Natural Ground Level 425.00 Ft.

> Natural Ground Elevation 5.00 Ft.

Control Water Elevation 7.50 Ft.

Minimum Clearance over Control Water Elevation 6.00 Ft.

> Berm Width 3.00 Ft.

Vertical Distance from bottom of beams to top of Berm where slope starts 2.25 Ft. 2.00 Ft.

Distance From FFBW to Front Edge of End Bent Cap

Minimum Span length 28.00 Ft.

Preliminary Bridge Length (No adjustment due to pile/drilled shaft in the opening), L' = 460.00 Ft.

ADJUS	TED BRIDGE LI	ENGTH (L)	ADJ	USTED SPA	AN LENGTH
18 in. Pile	24 in. Pile	36 in. Drilled Shaft	18 in. Pile	24 in. Pile	36 in. Drilled Shaft
479.50 Ft.	486.00 Ft.	499.00 Ft.	34.25 Ft.	34.71 Ft.	35.64 Ft.
481.00 Ft.	488.00 Ft.	502.00 Ft.	32.07 Ft.	32.53 Ft.	33.47 Ft.
482.50 Ft.	490.00 Ft.	505.00 Ft.	30.16 Ft.	30.63 Ft.	31.56 Ft.
484.00 Ft.	492.00 Ft.	508.00 Ft.	28.47 Ft.	28.94 Ft.	29.88 Ft.
485.50 Ft.	494.00 Ft.	511.00 Ft.			28.39 Ft.
	18 in. Pile 479.50 Ft. 481.00 Ft. 482.50 Ft. 484.00 Ft.	18 in. Pile 24 in. Pile 479.50 Ft. 486.00 Ft. 481.00 Ft. 488.00 Ft. 482.50 Ft. 490.00 Ft. 484.00 Ft. 492.00 Ft.	18 in. Pile 24 in. Pile 36 in. Drilled Shaft 479.50 Ft. 486.00 Ft. 499.00 Ft. 481.00 Ft. 488.00 Ft. 502.00 Ft. 482.50 Ft. 490.00 Ft. 505.00 Ft. 484.00 Ft. 492.00 Ft. 508.00 Ft.	18 in. Pile 24 in. Pile 36 in. Drilled Shaft 18 in. Pile 479.50 Ft. 486.00 Ft. 499.00 Ft. 34.25 Ft. 481.00 Ft. 488.00 Ft. 502.00 Ft. 32.07 Ft. 482.50 Ft. 490.00 Ft. 505.00 Ft. 30.16 Ft. 484.00 Ft. 492.00 Ft. 508.00 Ft. 28.47 Ft.	18 in. Pile 24 in. Pile 36 in. Drilled Shaft 18 in. Pile 24 in. Pile 479.50 Ft. 486.00 Ft. 499.00 Ft. 34.25 Ft. 34.71 Ft. 481.00 Ft. 488.00 Ft. 502.00 Ft. 32.07 Ft. 32.53 Ft. 482.50 Ft. 490.00 Ft. 505.00 Ft. 30.16 Ft. 30.63 Ft. 484.00 Ft. 492.00 Ft. 508.00 Ft. 28.47 Ft. 28.94 Ft.

Corps of Engineers, Jacksonville, Florida

Done by: M. LeComte

Alternatives 1 & 2 (Bridges 1 & 4

BEAM SPACING vs. DESIGN SPAN

Checked by: C. Li

:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 1&2 northdetour\[Type A Bridges 1 and 4 TOPDOWN.xls]BEAM-INP

November 29, 2000

Determine beam spacing and design span:

Bridge Width: 43.08 Ft.

Slab Thickness: 8.50 in.

Number	Beam			² Design Sp	an		
of Beams	Spacing	AASHTO Type II	AASHTO Type III	AASHTO Type IV	18" Double T	24" Double T	30" Double T
4	10.77 Ft.	46.00 Ft.	65.00 Ft.	84.00 Ft.			
5	8.62 Ft.	52.00 Ft.	73.00 Ft.	90.00 Ft.			
6	7.18 Ft.	58.00 Ft.	78.00 Ft.	96.00 Ft.	40.00 Ft.	50.00 Ft.	60.00 Ft.
7	6.15 Ft.	62.00 Ft.	82.00 Ft.	98.00 Ft.			
8	5.39 Ft.	66.00 Ft.	84.00 Ft.	102.00 Ft.			

¹Beam spacing is based on assuming the cantilever to be half of the beam spacing.

²Design spans are determined from the charts based on the beam spacing given.

Corps of Engineers, Jacksonville, Florida

PBS,

acksonville, Florida Done by: M. LeComo

Alternatives 1 & 2 (Bridges 1 & 4)

AASHTO BEAMS COMPARISON

Checked by: C. Li

1:STRUCT/Design\Tamiami-Trail/design\cost-analysis\alternative 1&2 northdetour\[Type A Bridges 1 and 4 TOPDOWN.xls]BEAM-1

November 29, 2000

	Length		5165			mber of A. Beams Reg			-3		
PIL	.ES	Drilled		18* Piles		50000	24" Piles		Dril	lled S	haft
18 in.	24 in.	Shaft	11	1[]	IV	11	III	IV	11	Ш	IV
34.25 Ft.	34.71 Ft.	35.64 Ft.	4	4	4	4	4	4	4	4	4
32.07 Ft.	32.53 Ft.	33.47 Ft.	4	4	4	4	4	4	4	4	4
30.16 Ft.	30.63 Ft.	31.56 Ft.	4	4	4	4	4	4	4	4	4
28.47 Ft.	28.94 Ft.	29.88 Ft.	4	4	4	4	4	4	4	4	4
		28.39 Ft.							4	4	4
	34.25 Ft. 32.07 Ft. 30.16 Ft.	34.25 Ft. 34.71 Ft. 32.07 Ft. 32.53 Ft. 30.16 Ft. 30.63 Ft.	34.25 Ft. 34.71 Ft. 35.64 Ft. 32.07 Ft. 32.53 Ft. 33.47 Ft. 30.16 Ft. 30.63 Ft. 31.56 Ft.	34.25 Ft. 34.71 Ft. 35.64 Ft. 4 32.07 Ft. 32.53 Ft. 33.47 Ft. 4 30.16 Ft. 30.63 Ft. 31.56 Ft. 4 28.47 Ft. 28.94 Ft. 29.88 Ft. 4	34.25 Ft. 34.71 Ft. 35.64 Ft. 4 4 32.07 Ft. 32.53 Ft. 33.47 Ft. 4 4 30.16 Ft. 30.63 Ft. 31.56 Ft. 4 4 28.47 Ft. 28.94 Ft. 29.88 Ft. 4 4	34.25 Ft. 34.71 Ft. 35.64 Ft. 4 4 4 32.07 Ft. 32.53 Ft. 33.47 Ft. 4 4 4 4 30.16 Ft. 30.63 Ft. 31.56 Ft. 4 4 4 4 28.47 Ft. 28.94 Ft. 29.88 Ft. 4 4 4	34.25 Ft. 34.71 Ft. 35.64 Ft. 4 4 4 4 32.07 Ft. 32.53 Ft. 33.47 Ft. 4 4 4 4 4 30.16 Ft. 30.63 Ft. 31.56 Ft. 4 4 4 4 4 28.47 Ft. 28.94 Ft. 29.88 Ft. 4 4 4 4	34.25 Ft. 34.71 Ft. 35.64 Ft. 4 4 4 4 4 4 32.07 Ft. 32.53 Ft. 33.47 Ft. 4 4 4 4 4 4 4 4 30.16 Ft. 30.63 Ft. 31.56 Ft. 4 4 4 4 4 4 4 4 28.47 Ft. 28.94 Ft. 29.88 Ft. 4 4 4 4 4 4	34.25 Ft. 34.71 Ft. 35.64 Ft. 4 4 4 4 4 4 32.07 Ft. 32.53 Ft. 33.47 Ft. 4 4 4 4 4 4 4 4 4 30.16 Ft. 30.63 Ft. 31.56 Ft. 4 4 4 4 4 4 4 4 4 28.47 Ft. 28.94 Ft. 29.88 Ft. 4 4 4 4 4 4 4 4	34.25 Ft. 34.71 Ft. 35.64 Ft. 4 4 4 4 4 4 4 4 32.07 Ft. 32.53 Ft. 33.47 Ft. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	34.25 Ft. 34.71 Ft. 35.64 Ft. 4 4 4 4 4 4 4 4 4 32.07 Ft. 32.53 Ft. 33.47 Ft. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Number					Constructi SHTO Bea				
of	§	18 in. Piles			24 in. Piles		DF	RILLED SH.	AFT
Spans	п	Ш	IV	11	Ш	IV	II	III	IV
14	\$103,572	\$128,506	\$161,112	\$104,976	\$130,248	\$163,296	\$107,784	\$133,732	\$167,664
15	\$103,896	\$128,908	S161,616	\$105,408	\$130,784	\$163,968	\$108,432	\$134,536	\$168,672
16	\$104,220	\$129,310	S162,120	\$105,840	\$131,320	\$164,640	\$109,080	\$135,340	\$169,680
17	\$104,544	\$129,712	\$162,624	\$106,272	\$131,856	\$165,312	\$109,728	\$136,144	\$170,688
18	N/A	N/A	N/A	N/A	N/A	N/A	S110,376	\$136,948	\$171,69€

Number		Mos	t Economic Beam	cal AASHTO Type		
of	18*	PILES		PILES	DRILLE	D SHAFT
Spans	TYPE	COST	TYPE	COST	TYPE	COST
14	[]	\$103,572	11	\$104,976	II	\$107,784
15	11	\$103,896	11	\$105,408	II	\$108,432
16	II	\$104,220	II	S105,840	II	\$109,080
17	11	\$104,544	П	\$106,272	11	\$109,728
18					П	\$110,376

Corps of Engineers, Jacksonville, Florida

LR2

Done by: M. LeComt

Alternatives 1 & 2 (Bridges 1 & 4)

SUPERSTRUCTURE ALTERNATIVES COMPARISON

Checked by: C. Li

\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 1&2 northdetour\[Type A Bridges 1 and 4 TOP

November 29, 2000

Number	74-5-0-22	AASH	TO BEA	MS WITH	DECK		111-1	Fle	orida Doub	le Tee Bean	15	
of	18"	PILES	24"	PILES	DRILL	ED SHAF	18" F	PILES	24" !	PILES	Commence of the Commence of th	ED SHAF
Spans	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST
14	11	\$321,578	11	\$325,937	II	\$334,655	FDT18	\$517,860	FDT18	\$524,880	FDT18	\$538,926
15	11	\$322,584	11	\$327,278	II	\$336,667	FDT18	\$519,480	FDT18	\$527,040	FDT18	\$542,160
16	. 11	\$323,590	-п-	\$328,620	TI	'S338',679"	FDT18	\$521,100	FDT18	\$529,200	FDT18	\$545,400
17	11	\$324,596	11	\$329,961	II	S340,691	FDT18	\$522,720	FDT18	\$531,360	FDT18	\$548,640
18					II	\$342,703					FDT18	\$551,880
						122-100						
											100	
												4.65

Deck Reinforcement 205 lbs/CY concrete Cost of Deck per foot \$455/ft.

			PREC.	AST SLAB				MOS	ST ECONO	MICAL SUI	PERSTE	RUCTURE	ALTERNA	TIVE	
Number	18"	PILES	24'	PILES	DRILL	ED SHAF		18 in. Pil	e	2	4 in. Pil	e	33	36 in. Sh	aft
of Spans	Thick- ness	Estimated Cost	Thick- ness	Estimated Cost	Thick- ness	Estimated Cost	Number of Beams	Beam Type	Estimated Cost	Number of Beams	Beam Type	Estimated Cost	Number of Beams	Beam Type	Estimated Cost
14	21	\$1,004,231	21	\$1,017,844	21	\$1,045,070	1	21	\$1,004,231	I	21	\$1,017,844	1	21	\$1,045,07
15	20	\$959,402	20	\$973,364	20	\$1,001,289	1	20	\$959,402	1	20	\$973,364	1	20	\$1,001,28
16	19	\$914,274	19	\$928,486	19	\$956,909	1	19	\$914,274	1	19	\$928,486	1	19	\$956,909
17	18	\$868,847	18	\$883,208	19	\$962,593	1	18	\$868,847	1	18	\$883,208	1	. 19	\$962,593
18					18	\$917,316							1	18	\$917,316

PRECAST SLAB ALTERNATIVE IS PREFERRED FOR TOP DOWN CONSTRUCTION REO'D

Tumiami Trail Modified Water Debreries to Everglades National Park Project

Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida

FOUNDATION LOADS and NUMBER of 18 in. PRESTRESSED PILES

Alternatives 1 & 2

-Traffdelignione analysis attenuive 182 north-town/Type A Bodges 1 and 4 TOPDOWN, thyldEAM-INPUT (Bridges 1 & 4)

Number of lancs

Bridge Width 43.08 Ft.

Number of Florida Double Tee = 6

November 29, 2000

Toma no.	Checked by: C. Li	

17 spans	18	9.694 kJf	1 beams	28.47 Ft.	26.47 Ft.		0.015 ksf	0.836 kIF		158.4 k	316.9 k					48.4 k	35.1 k	130.7 k		52.3 k	44.2 k	141.3 k		465.2 k	516.3 k					4	4	116 k	129 k
16 spans	19	10.232 kH	1 beans	30.16 Ft.	28.16 Ft.		0.015 ksf	0.836 kH		175.9 k	351.9 k					49.7 k	35.7 k	134.2 k		53.4 k	45.3 K	144.3 k		486.3 k	554.3 k					4	प	122 k	139 k
15 spans	50	10.771 kH	1 beams	32.07 Ft.	30.07 Ft.		0.015 ksf	0.836 kH		195.7 k	391.4 k					51.0 k	36.3 k	137.8 k		54.5 k	45.5 k	147.2 ₺		\$ 9.60S	596.8 k					4	٧١	127 k	119 k
14 spans	21	11.309 kdf	I beams	34.25 Ft.	32.25 Ft.		0.015 ksf	0.836 Mf		218.3 ₺	436.5 k		6.0	1.0		52.4 k	37.0 k	141.4 k		55.6 k	47.9 k	150.3 ₺		535.8 k	644.9 k		13.0 Ft.	147.0 k	4.0 Ft.	41	ν,	134 k	129 k
Number of Spans	Beam Type	Beam Weight (k/ft)	Number of Beams	Span Length (ft)	Beam Span (ft)	Bridge Deck Thickness (ia)	Comp. Loads (krt)	Barrier Loads (Arft)(both sides)	Dead Load	Beam Load (End Bern)	Beam Load (Pier)	Lire Load	Reduction factor	Impact factor for Substructure	LL Reaction per lane (END BENT)	Truck load	Lanc load	Total Live Load (END BENT)	LL Reaction per lane (PIER)	Truck load	Lanc load	Total Live Load (PIER)	TotalLoad	Superstructure Load (END BENT)	Superstructure Load (PIER)	Foundation	Maximum pile spacing	Service Load Capacity of Piles	Location of Ext. pile from coping at End Bent/Pier	Number of Piles Required For END BENT	Number of Piles Required For PIER	Service Design Load (END RENT)	Service Design Load (PIER)

PBS) Don by M. LeCome	Checked	Navamber 29, 2000	Number of Florida Double Tee = 6
Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Copps of Engineers, Jacksonville, Florida	FOUNDATION LOADS and NUMBER of 24 in. PRESTRESSED PILES	182 untildenuri Type A Bridges 1 and 4 TOFDOWN, skijBEAM-INPUT	Number of lance 3
Tamiami Trail Modiffe Preparatio Co	Alternatives 1 & 2 (Bridges 1 & 4)	CT Design Tuniani-Traff designicos analyzis alterneiro 182 northdessur (Type A Bridges 1 a	Bridge Wolff 43 08 Ft

14 spans 15 spans 16 spans 17 21 1309 Mf 10.771 Mr 10.232 Mf 9, 19 19 19 19 19 19 19 19 19 19 19 19 19	Bridge Width 43.08 Ft.	Ne	Number of lanes	3		Number of Florida Double Tee = 6
Beam Type 21 20 19	Number of Stons	14 spans	15 spans	16 spans	17 spans	
Number of Beams 1 hearns 1 hearns 1 hearns 1 hearns 253 Hr. 24 53 Hr. 24 53 Hr. 24 53 Hr. 25 54 Hr. 25 5	Beam Type	21	8	- 61	. 81	
Number of Beams Deams Deams Deams Deams	Beam Weight (k/ft)	11.309 Mf	10,771 kif	10.232 kdf	9.694 kdf	
Span Length (ft) 34.71 Ft. 30.53 Ft. 30.63 Ft. Bridge Dock Thickness (in) Comp. Loads (keft) 0.015 keft	Number of Beams	I beams	1 beams	1 beams	I beams	
Bridge Deck Thickness (in) 22.71 Ft. 30.53 Ft. 28 63 Ft. Barrier Loads (keft) (both sides) 0.836 kif Span Length (ft)	34.71 Ft.	32.53 Ft.	30.63 Ft.	28.94 FL		
Bridge Deck Thickness (in) Comp. Loads (ksf) 0.015 ksf 0.0	Beam Span (ft)	32.71 Ft.	30.53 Ft.	28 63 Pt.	26.94 FL	
	Bridge Dock Thickness (in)					
Bearrier Loads (k/fi)(both sides) 0.836 kif	Comp. Loads (ksf)	0.015 ksf	0.015 ksf	0.015 ksf	0.015 ksf	
	Barrier Loads (k/fi)(both sides)	0.836 kff	0.836 kdf	0.836 kH	0.836 kJf	
Reduction factor 0.9 12.1.2 k 198.6 k 178.7 k 178.7 k 178.7 k 178.7 k 178.2 k 178.7 k 178.2 k	Dead Load					
Reduction factor 0.9	Beam Load (End Bent)	221.2 k	198.6 k	178.7 k	161.1 %	
Reduction factor 0.9	Beam Load (Pict)	442.4 k	397,1 k	357.3 k	322.1 k	
Reduction factor 0.9						
Impact factor for Substructure 1.0 Reaction per lane (END BENT) Truck load 52.6 k 51.3 k 50.1 k Lane load 37.1 k 36.4 k 35.8 k 142.1 k 138.6 k 135.2 k 142.1 k 138.6 k 135.2 k 142.1 k 138.6 k 135.2 k 142.1 k 138.6 k 135.2 k 142.1 k 138.6 k 135.2 k 143.2 k 46.8 k 45.6 k 143.6 k 147.9 k 145.0 k 143.6 k 147.9 k 145.0 k 143.6 k 147.9 k 145.0 k 143.6 k 147.9 k 145.0 k 143.6 k 147.9 k 145.0 k 143.6 k 130.8 k 147.9 k 145.0 k 143.6 k 130.8 k 143.6 k 130.8 k 143.6 k 143.0 k 143.6 k 143.6 k 143.6 k 143.6 k 143.6 k 143.6 k 143.6 k 143.6 k 143.6 k 143.6 k 143.6 k 143.6 k 143.6 k 143.6 k 143.6 k	Reduction factor	6.0				
Superstructure Load (PIER) Superstructure	Impact factor for Substructure	1.0				
Truck load \$2.6k \$1.3k \$0.1k	II. Reaction per lane (END BENT)					
Lane load 37.1 k 36.4 k 35.8 k Reaction per lane (PIER)	Truck load	\$2.6 k	51.3 k	50.1 k	48.8 k	
Maximum pile spacing 13.0 Ft. 138.6 k 135.2 k 13.0 k 13.0 k 135.2 k 13.0 k 13.0 k 13.0 k 13.0 k 13.0 k 14.0 k	Lanc load	37.1 ₺	36.4 k	35.8 k	35.3 k	
Truck load 55.9 k 54.8 k 53.7 k Lane load 48.2 k 46.8 k 45.6 k Lane load 48.2 k 46.8 k 45.6 k 150.8 k 147.9 k 145.0 k Superstructure Load (END BENT) 539.5 k 513.3 k 489.9 k Superstructure Load (PIER) 651.5 k 603.2 k 560.5 k Maximum pite spacing 13.0 Ft. Service Load Capacity of Piles 260.0 k Substructure Tobal Bent Piles 4.0 Ft. Number of Piles Required For END BENT 4 4 Number of Piles Required For PILE 4.0 Ft. Service Design Load (END BENT) 153 k 1128 k 1121 k Service Design Load (FIRE) 163 k 1121 k 140 k Service Design Load (FIRE) 163 k 151 k 140 k Service Design Load (FIRE) 163 k 151 k 140 k Service Design Load (FIRE) 163 k 151 k 140 k Service Design Load (FIRE) 163 k 151 k 140 k Service Design Load (FIRE) 163 k 151 k 140 k Service Design Load (FIRE) 163 k 151 k 140 k Service Design Load (FIRE) 163 k 151 k 140 k Service Design Load (FIRE) 163 k 151 k 140 k Service Design Load (FIRE) 163 k 151 k 140 k Service Design Load (FIRE) 163 k 151 k 140 k Service Design Load (FIRE) 163 k 151 k 140 k Service Design Load (FIRE) 163 k 151 k 140 k Service Design Load (FIRE) 163 k 151 k 140 k Service Design Load (FIRE) 163 k 151 k 140 k Service Design Load (FIRE) 163 k 151 k Service Design Load (FIRE) 163 k 151 k Service Design Load (FIRE) 163 k 163 k Service Design Load (FIRE) 163 k Serv	Total Live Load (END BENT)	142.1 k	138.6 k	135.2 k	131.7 k	
Lane load 150.9 k 25.7 k 25.7 k Lane load 48.2 k 46.8 k 45.6 k Lane load 150.8 k 147.9 k 145.0 k Superstructure Load (END BENT) 539.5 k 513.3 k 489.9 k Superstructure Load (PIER) 651.5 k 603.2 k 560.5 k Maximum pile spacing 13.0 Fc. Service Load Capacing 13.0 Fc. Service Load Capacing 260.0 k 4 4 Number of Piles Required For END BENT 4 4 Number of Piles Required For END BENT 4 4 Service Design Load (FIER) 153 k 1123 k 140 k Service Design Load (FIER) 163 k 151 k 140 k Service Design Load (FIER) 163 k 151 k 140 k Service Design Load (FIER) 163 k 151 k 140 k Service Design Load (FIER) 163 k 151 k 140 k Service Design Load (FIER) 163 k 151 k 140 k Service Design Load (FIER) 163 k 151 k 140 k Service Design Load (FIER) 163 k 151 k 140 k Service Design Load (FIER) 163 k 151 k 140 k Service Design Load (FIER) 163 k 151 k 140 k Service Design Load (FIER) 163 k 151 k 140 k Service Design Load (FIER) 163 k 151 k 140 k Service Design Load (FIER) 163 k 151 k 140 k Service Design Load (FIER) 163 k 151 k 140 k Service Design Load (FIER) 163 k 151 k 140 k Service Design Load (FIER) 163 k 151 k 140 k Service Design Load (FIER) 163 k 151 k Service Design Load (FIER) 163 k 151 k Service Design Load (FIER) 163 k 151 k Service Design Load (FIER) 163 k 151 k Service Design Load (FIER) 163 k Service Design Load (FIER) 163 k Service Design Load (FIER) 163 k Service Design Load (FIER) 163 k Service Design Load (FIER) 163 k Service Design Load (FIER) 163 k Service Design Load (FIER) 163 k Service Design Load (FIER) 163 k Service Design Load (FIER) 163 k Service Design Load (FIER) 163 k Service Design Load (FIER) 163 k Service Design Load (FIER) 163 k Service Design Load (FIER) 163 k		3	į	į	100	
Lane load (PIER)	I ruck load	35.5	20.40	33.7 K	32.7 K	
Superstructure Load (END BENT) 539.5 k 513.3 k 489.9 k		150.8 k	147.9 K	145.0 k	142.2 k	
Superstructure Load (END BENT) 539.5 k 513.3 k 489.9 k						
Superstructure Load (PIER) 651.5 k 603.2 k 560.5 k Maximum pile spacing 13.0 Fr. Service Load Capacity of Piles 260.0 k ion of Ext. pile from coping at End Benr Pier 4.0 Fr. Number of Piles Required For END BENT 4 4 4 Number of Piles Required For PIIR 4 4 4 Service Design Load (FND BENT) 135 k 123 k Service Design Load (FND BENT) 153 k 123 k		539.5 k	513.3 k	489.9 k	468.9 k	
Service Load Capacing 13.0 Ft. Service Load Capaciny of Piles 260.0 k Number of Piles Required For END BENT 4 4 4 Number of Piles Required For Piles 4 4 4 Service Design Load (END BENT) 135 k 123 k Service Design Load (PIER) 163 k 151 k 140 k	Superstructure Load (PIER)	651.5 k	603.2 k	560.5 k	522.4 k	
Naximum pile spacing 13.0 Fc. Service Load Capacing of Piles 260.0 k Some coping at End Beng Pier 4.0 Fc. Number of Piles Required For END BENT 4 4 4 Number of Piles Required For Piles 4 4 4 Service Design Load (FND BENT) 135 k 123 k 122 k Service Design Load (PIER) 163 k 151 k 140 k	Foundation					
260.0 k 4.0 Ft. 4 4 4 135 k 128 k 122 k 163 k 151 k 140 k		13.0 Ft.				
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Service Load Capacity of Piles	260.0 k				
4 4 4 4 128 122 k 123 k 153 k 151 k 140 k	Location of Ext. pilot from coping at End Belly friet Number of Pilos Required For END BENT	4	্ৰ	4	প	
135 k 128 k 122 k 163 k 151 k 140 k	Number of Piles Required For PH:R	4	4	4	4	
163 k 151 k 140 k	Service Design Load (END BENT)	135 k	128 k	122 k	117 k	
	Service Design Load (PIER)	163 k	151 k	140 k	131 k	

mi Trail Modified Water Deliveries to Everglades National Park Project

Tamiami Trail Modified Water Deltveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Janksonville, Florida	ater Deliverie Engineering / Engineers, Js	diffied Water Deliveries to Everglades Na ation of Engineering Appendix For GRR Corps of Engineers, Jacksonville, Florida	s National Pa GRR/SEIS nida	rk Project		Done by, M. LeCoure
Alternatives 1 & 2 (Resistant 1 & 0)	UNDATIO	FOUNDATION LOADS on DRILLED SHAFT	on DRILLI	ED SHAFT	SERVICE CONTROL	Checked by: C. Li
Correspondence of the Company of Sandarian Inches of Sandarian Company (Type A Bridge: Land & TOPDOWN, InspEAM-INFOT	northderour!(Typ	ne A Bridges I an	14 TOPDOWN.	xs)BEAM-INFU	Т	November 29, 2000
Bridge Width 43 OS Ft.	Ñ	Number of lanes	6		Number of Florida Double Tee -	Double Tee = 6
Number of Spans	14 spans	15 spans	16 spans	17 spans	18 spans	
Beam Type	71	20	61	16	18	
Beam Weight (3cft)	11.309 kdf	10.771 kH	10.232 kdf	10.232 kif	9.694 kH	
Number of Beans	1 beants	1 beams	l beams	1 beams	1 beams	
Span Length (ft)	35.64 Ft.	33.47 Ft.	31.56 Ft.	29.88 Ft.	28.39 Ft.	
Beam Span (ft)	33.64 Pt.	31.47 Pt.	29.56 Ft.	27.88 Pt.	26.39 Ft.	
Bridge Dock Thickness (in)						
Comp. Loads (ksf)	0.015 ksf	0.015 ksf	0.015 ksf	0.015 ksf	0.015 ksf	
Ramier Loads (k/ll)(both sides)	0.836 kdf	0.836 Mf	0.836 kdf	0.836 kdf	0.836 kHf	
Dead Load Ream Load (End Rent)	41777	204.3 k	4.18	174.3 k	158.0 k	
Beam Load (Pict)	454.3 k	408.5 k	368.3 k	348.7 k	316.0 k	
Live Load						
Reduction factor for Substructure	0.9					
LL Reaction per lane (END BENT)						
Truck load	53.1 k	51.9 k	50.7 k	49.5 K	48.3 k	
Lane load	37.4 k	36.7 k	36.1 k	35.6 k	35.1 k	
Total Live Load (END BENT)	143.5 k	140.2 k	136.9 k	133.7 k	130.5 k	
LL Reaction per lane (PIER)	2000			4	1117	
Linck load	48.8 k	47.4 K	46.2 k	45.1 k	44.2 k	
Total Live Load (PIFR)	152.0 k	149.2 k	146.5 k	143.8 k	141.1 k	
Total Load Supercontinue Load (END BEND)	475.8 k	549.63	526.2 k	\$13.2 K	493.7 k	
Superstructure Load (PIER)	683.8 k	635.3 K	592.3 k	570.0 k	534.7 k	
Doundation						
Maximum pile spacing Locarism of Ext. shaft from coping at End Bent	16.0 H. 6.0 Ft.					
Number of Piles Required For END BENT	r	e	3	3	r	
Number of Piles Required For PIER	ra	e4	7	7	ra :	
Service Design Load (END BENT)	192 k	183 k	175 %	171 K	165 %	
Service Design Load (PIEK)	175	210 8	4 0/C#	* 707	W 107	

Corps of Engineers, Jacksonville, Florida

PBS)

Done by: M. LeCom

Alternatives 1 & 2 (Bridges 1 & 4)

INTERMEDIATE BENTS / PIERS

Checked by: C. Li

:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 1&2 northdetour\[Type A Bridges 1 and 4 TOPDOWN.xls]BEAM-INPUT

November 29, 2000

Pier Section (2 Drilled Shafts)

Foundation Type	18 in. Pile	24 in. Pile	36 in. Shaft
Estimated Pile Embedment Length	19 ft.	19 ft.	14 ft.
Pile Length Above Ground	8 ft.	8 ft.	8 ft.
Total Length of Pile	27 ft.	27 ft.	22 ft.
Estimated Cost of One Pile/Drilled Shaft	\$891	\$1,242	\$4,840
Bent cap cross sectional area	9.0 sq.ft	9.0 sq.ft	12.0 sq.ft
Bent Cap Length	43 ft.	43 ft.	43 ft.
Total Concrete Volume	14.4 CY	14.4 CY	19.1 CY
Reinforcement at 145 lbs/CY	2082 lbs	2082 lbs	2776 lbs
Estimated Cost of Bent Cap	\$6,897	\$6,897	\$9,196

PRESTRESSED PILES	18 in.	24 in.	DRILLED SHAFT	36 in.
Number of test loads per bridge	3 ea.	3 ea.	Number of test loads per bridge	1 ca.
		-	Core (Shaft Excavation)	
			Length of temporary casing	
Est, total cost of test piles w/ dynamic load test per bridge	\$20,160	\$20,160	% of casing splice	14
			Excavation, unclassified shaft	
% of pile splice	10%	10%	Drilled shaft sidewall overreaming	
% of pile hole preformed	100%	100%	Excavation, unclassified extra depth	

Number of	Number (Requi	(C) 1,00	Number of Drilled Shafts		st of Piles nt / Pier	Total Cost of Drilled Shaft	Tot	al Estimated of ONE Pic	
Spans	18 in.	24 in.	36 in.	18* Pile	24" Pile	per Pier	18" Pile	24" Pile	36* Shaft
14	5	4	2	\$7,061	\$7,387	\$13,526	\$13,958	\$14,284	\$22,722
15	5	4	2	\$6,950	\$7,276	\$13,251	\$13,847	\$14,173	\$22,447
16	4	4	2	\$5,752	\$7,180	\$13,013	\$12,649	\$14,077	\$22,209
17	4	4	2	\$5,668	\$7,096	\$12,805	\$12,565	\$13,993	\$22,001
18			2			\$12,621			S21,817

Corps of Engineers, Jacksonville, Florida

PBS)

Done by: M. LeConte

November 29, 2000

Checked by: C. Li

Alternatives 1 & 2 (Bridges 1 & 4)

END BENTS

\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 1&2 northdetour\[Type A Bridges 1 and 4 TOPDOWN.xls]BEA

	Foundation Type	18 in. Pile	24 in. Pile	36 in. Shaft
Estimate	d Pile Embedment Length	19 ft.	19 ft.	14 ft.
F	ile Length Above Ground	8 ft.	8 ft.	8 ft.
	Total Length of Pile	27 ft.	27 ft.	22 ft.
-Estimated Cost	of One Pile/Drilled Shaft	\$891	-\$1,242	\$4,840
Be	nt cap cross sectional area	7.5 sq.ft	7.5 sq.ft	12.0 sq.ft
	Bent Cap Length	43 ft.	43 ft.	43 ft.
	Total Concrete Volume	12.0 CY	12.0 CY	19.1 CY
Reinforcement at	145 lbs/CY	1735 lbs	1735 lbs	2776 lbs
	Estimated Cost of Bent Cap	\$5,747	\$5,747	\$9,196

PRESTRESSED PILES	18 in.	24 in.	DRILLED SHAFTS	36 in.
			Core(Shaft Excavation)	
			Length of temporary casing	
			Percentage of casing splice	
			Excavation, unclassified shaft	
% of pile splice	10%	10%	Drilled shaft sidewall overreaming	
% Pile hole preformed	100%	100%	xcavation, unclassified extra depth	

Number	Numbe	r of Piles	Number of	Total Co	st of Piles	Total Cost of	To	tal Estimated	Cost
of	Rec	juired ¹	Drilled Shafts ²	per Be	nt / Pier	Dritled Shaft	9	of ONE Pier	
Spans	18 in.	24 in.	36 in.	18" Pile	24" Pile	per Pier	18* Pile	24" Pile	36" Shafi
14	4	4	3	\$4,408	\$5,836	\$14,520	\$10,155	\$11,583	\$23,716
15	4	4	3	\$4,408	\$5,836	\$14,520	\$10,155	\$11,583	\$23,716
16	4	4	3	\$4,408	\$5,836	\$14,520	\$10,155	\$11,583	\$23,716
17	4	4	3	\$4,408	\$5,836	\$14,520	\$10,155	\$11,583	\$23,716
18			3			\$14,520	A DESCRIPTION OF		\$23,716
	1								
	0 0					Annual Control			

¹Includes wingwall piles for Type IV, III, II beams.

²Includes wingwall drilled shafts for Type IV, III, II beams.

Corps of Engineers, Jacksonville, Florida

ASTRUCT\Design\Tamiami-Traif\design\cost-analysis\alaermative 1&2 northdetnar\(Type A Bridges 1 and 4 TOPDOWN.xls\)BEAM-INPUT

Alternatives 1 & 2 (Bridges 1 & 4)

SUBSTRUCTURE & SUPERSTRUCTURE ALTERNATIVES COMPARISON

Checked by, C. Li

November 29, 2000

Number	ADJU	STED SPAN	LENGTH	Number	C	ost of Substruc	ture	Cos	t of Superstruc	cture	Tota	1 Cost of Stru	cture
of	18 in.	24 in.	36 in.	of	18 in.	24 in.	36 in.	18 in.	24 in.	36 in.	18 in.	24 in.	36 in.
Spans	Pile	Pite	Shaft	Piers	Pile	Pile	Shaft	Pile	Pile	Shaft	Pile	Pile	Shaft
14	34.25 Ft.	34.71 Ft.	35.64 Ft.	13	\$201,761	\$208,855	\$342,818	\$1,004,231	\$1,017,844	\$1,045,070	\$1,205,991	\$1,226,699	\$1,387,888
15	32.07 Ft.	32.53 Ft.	33.47 Ft.	14	\$214,168	\$221,588	\$361,694	\$959,402	\$973,364	\$1,001,289	\$1,173,570	\$1,194,952	\$1,362,983
16	30.16 Ft.	30.63 Ft.	31.56 Ft.	15	\$210,045	\$234,321	\$380,570	\$914,274	\$928,486	\$956,909	\$1,124,319	\$1,162,806	\$1,337,479
17	28.47 Ft.	28.94 Ft.	29.88 Ft.	16	\$221,350	\$247,054	\$399,446	\$868,847	\$883,208	\$962,593	\$1,090,197	\$1,130,262	\$1,362,040
18			28.39 Ft.	17			\$418,322			\$917,316			\$1,335,638
				F-47' - 4						A. Complete			
								-					
	100												
								-					-

SUMMARY OF MOST ECONOMICAL ALTERNATIVES FOR EACH SPAN ARRANGEMENT:

Number of Spans	Estimated Cost	Foundation Alternative	Superstructure Alternative	Number of Spans	Number of Beams	Number of Piles or Drilled Shafts	Total Length of Piles or Drilled Shafts	Number of Test Piles	Total Length of Test Piles
14	HHARBHHAR	18 in.	21	14	1	70	1890 ñ	3	126 ft
15	*****	18 in.	20	15	1	75	2025 ft	3	126 ft
16	********	18 in.	19	16	1	65	1755 ft	3	126 ft
17	********	18 in.	18	17	1	69	1863 ft	3	126 ft
18	********	36 in.	18	18	1	40	880 fi		

######## <--- Minimum

RESULT OF COST COMPARISON STUDY:

Most economical superstructure type: 18 in, thick precast slab

Most economical substructure type: 18 in.

Optimum Span Arrangement: 17 spans at 28.47 FT.

Total bridge length: 484.00 Ft. Total number of beams: N/A

Total length of beams: N/A

Number of piles or drilled Shafts: 69

Length of Piles or drilled Shafts: 1863.00 Ft.

Corps of Engineers, Jacksonville, Florida

Done by: M. LeConte

Checked by: C. Li

Alternatives 1 & 2 (Bridges 1 & 4)

ESTIMATE OF PROBABLE CONSTRUCTION COSTS

:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 1&2 northdetour\[Type A Bridges 1 and 4 TOPDOW

November 29, 2000

Item	Quantity	Units	Unit Price	Ž	Amount
SUPERSTRUCTURE:					
Concrete	0	CY	\$310		
Reinforcing Steel	0	LBS	\$0.45		many the
Bridge Floor Grooving	2151	SY	\$2.50		\$5,378
Traffic Railing Barrier	968.0	FT	\$35		\$33,880
Expansion Joints ³	86.2	FT	\$84		\$7,238
18 in, thick precast slab	1158.5	CY	\$750		868,847
Neoprene Bearing Pads	32.313	CF	S425		\$13,733
reoprese bearing rates	52.515	-	0.20	-	
		Superstr	ructure Subtotal	\$	5929,076
SUBSTRUCTURE:					
Concrete	253.7	CY	\$415	S	5105,291
Reinforcing Steet ²	36788	LBS	\$0.45		\$16,555
Pile Hole, Preformed	69	EA	\$200		\$13,800
Test Piles	126	Ft.	\$160		\$20,160
18 in. Prestressed Concrete Piles (F & I)	1863	Ft.	\$33		\$61,479
Pile Splices	7	EA	\$110		\$770
Drilled shaft	0	LF	\$220		
Test load for drilled shaft	0	EA	\$50,000		
Core (Shaft Excavation)	0	LF			
Temporary casing	0	LF			
Casing splice	0	EA			
Excavation, unclassified shaft	0	LF			
Drilled shaft sidewall overreaming	0	LF			
Excavation, unclassified extra depth	0	LF			
		Substi	ructure Subtotal		\$218,055
		Construction	on Cost Subtotal		\$1,147,131
Mobilization (5% of Construction Cost)	1	LS		S	57,357
Contingency (15% of Construction Cost)	1	LS		\$	172,070
TOP DOWN Construction (20% of Construction Cost)	1	LS		\$	229,426
	Т	otal Cons	truction Cost	\$	1,605,983
		Deck Squ	are Footage (Ft.)		20,852
		Cost Per	Square Foot		\$77.02/sf
W.					

¹Ratio of reinforcement to superstructure concrete: 205 Lbs/CY.

²Ratio of reinforcement to substructure concrete: 145 Lbs/CY.

> ³Number of expansion piers: 2

Corps of Engineers, Jacksonville, Florida

PBS,

Done by: M. LeComte

Alternatives 1 & 2 (Bridges 2 & 3)

BRIDGE AND SPAN LENGTHS

Checked by: C. Li

:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 1&2 northdetour\[Type B Bridges 2 and 3 TOPD

November 29, 2000

Determine Bridge Length based on hydraulic opening:

Hydraulic Opening Width at Natural Ground Level

300.00 Ft.

Natural Ground Elevation

5.00 Ft.

Control Water Elevation

7.50 Ft.

Minimum Clearance over Control Water Elevation

Berm Width

6.00 Ft. 3.00 Ft.

Vertical Distance from bottom of beams to top of Berm where slope starts

2.25 Ft.

Distance From FFBW to Front Edge of End Bent Cap

2.00 Ft.

Minimum Span length

28.00 Ft.

Preliminary Bridge Length (No adjustment due to pile/drilled shaft in the opening), L' =

28.00 Ft. 335.00 Ft.

Number of	ADJUS	TED BRIDGE LI	ENGTH (L)	ADJ	USTED SPA	AN LENGTH
Spans	18 in. Pile	24 in. Pile	36 in. Drilled Shaft	18 in. Pile	24 in. Pile	36 in. Drilled Shaf
10	348.50 Ft.	353.00 Ft.	362.00 Ft.	34.85 Ft.	35.30 Ft.	36.20 Ft.
11	350.00 Ft.	355.00 Ft.	365.00 Ft.	31.82 Ft.	32.27 Ft.	33.18 Ft.
12	351.50 Ft.	357.00 Ft.	368.00 Ft.	29.29 Ft.	29.75 Ft.	30.67 Ft.
13	353.00 Ft.	359.00 Ft.	371.00 Ft.			28.54 Ft.

Corps of Engineers, Jacksonville, Florida

November 29, 2000

Checked by: C. Li

Alternatives 1 & 2 (Bridges 2 & 3

BEAM SPACING vs. DESIGN SPAN

I:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 1&2 northdetour\[Type B Bridges 2 and 3 TOPDOWN.xls]LENGTH

Determine beam spacing and design span:

Bridge Width: 43.08 Ft. Slab Thickness: 8.50 in.

Number	Beam	² Design Span								
of Beams	Spacing	AASHTO Type II	AASHTO Type III	AASHTO Type IV	18* Double T	24" Double T	30" Double T			
4	10.77 Ft.	46.00 Ft.	65.00 Ft.	84.00 Ft.	V					
5	8.62 Ft.	52.00 Ft.	73.00 Ft.	90.00 Ft.						
6	7.18 Ft.	58.00 Ft.	78.00 Ft.	96.00 Ft.	40.00 Ft.	50.00 Ft.	60.00 Ft.			
7	6.15 Ft.	62.00 Ft.	82.00 Ft.	98.00 Ft.						
8	5.39 Ft.	66.00 Ft.	84.00 Ft.	102.00 Ft.	7					

¹Beam spacing is based on assuming the cantilever to be half of the beam spacing.

²Design spans are determined from the charts based on the beam spacing given.

Corps of Engineers, Jacksonville, Florida

Done by: M. LeComto

Alternatives 1 & 2 (Bridges 2 & 3)

AASHTO BEAMS COMPARISON

Checked by: C. Li

STRUCT/Design/Tamiami-Trail/design/cost-analysis/alternative 1&2 northdetour/[Type B Bridges 2 and 3 TOPDOWN,xls]LENGT

November 29, 2000

Number	- 1	Adjusted Spa Length	in	Number of AASHTO Beams Required										
of	PII	ES	Drilled		18" Piles			24° Piles	5	Drill		Drilled		haft
Spans	18 in.	24 in.	Shaft	11	III	IV	[]	ш	IV	II	Ш	IV		
10	34.85 Ft.	35.30 Ft.	36.20 Ft.	4	4	4	4	4	4	4	4	4		
11	31.82 Ft.	32.27 Ft.	33.18 Ft.	4	4	4	4	4	4	4	4	4		
12	29.29 Ft.	29.75 Ft.	30.67 Ft.	4	4	4	4	4	4	4	4	4		
13			28.54 Ft.							4	4	4		

Number					Constructi SHTO Bea				
of	18 in, Piles			2000	24 in. Piles		DF	TILLED SH	AFT
Spans	П	III	IV	II	III	IV	11	III	IV
10	\$75,276	\$93,398	\$117,096	\$76,248	\$94,604	\$118,608	\$78,192	\$97,016	\$121,632
11	\$75,600	\$93,800	\$117,600	\$76,680	\$95,140	\$119,280	\$78,840	\$97,820	\$122,640
12	\$75,924	594,202	\$118,104	\$77,112	\$95,676	\$119,952	\$79,488	\$98,624	\$123,648
13	N/A	N/A	N/A	N/A	N/A	N/A	\$80,136	\$99,428	\$124,656

Number		Mos	t Economic Beam	al AASHTC Гуре)	
of	18" 1	PILES	24" I	PILES	DRILLE	D SHAFT
Spans	TYPE	COST	TYPE	COST	TYPE	COST
10.	II	\$75,276	II	\$76,248	[]	\$78,192
11	11	\$75,600	IJ	\$76,680	II.	\$78,840
12	11	\$75,924	11	\$77,112	II	\$79,488
13					11	\$80,136

Corps of Engineers, Jacksonville, Florida

PBS)

Done by: M. LeComt

Alternatives 1 & 2 (Bridges 2 & 3)

SUPERSTRUCTURE ALTERNATIVES COMPARISON

Checked by: C. Li

:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 1&2 northdetour\[Type B Bridges 2 and 3 TOP

November 29, 2000

Number		AASH	ГО ВЕА	MS WITH	DECK			Flo	orida Doub	le Tee Bean	ıs	
of	18"	PILES	24"	PILES	DRILL	ED SHAF	18" P	ILES	24"	PILES	DRILLE	ED SHAF
Spans	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST
10	II	\$233,722	11	\$236,740	11	\$242,776	FDT18	\$376,380	FDT18	\$381,240	FDT18	\$390,960
11	II	\$234,728	11	\$238,082	11	\$244,788	FDT18	\$378,000	FDT18	\$383,400	FDT18	\$394,200
12		\$235,734	· II	\$239,423	II	\$246,800	FDT18	\$379,620	"FDT18 "	*\$385,560	FDT18	\$397,440
13		0.70 7.00000			11	\$248,812		Sec. 100			FDT18	\$400,680

Deck Reinforcement 205 lbs/CY concrete Cost of Deck per foot \$455/ft.

			PREC.	AST SLAB			To see to the	MOS	ST ECONO	MICAL SUI	PERSTI	RUCTURE	ALTERNA	TIVE	
Number	18'	' PILES	24"	PILES	DRILL	ED SHAF		18 in. Pil	e	2	4 in, Pile	e		36 in. Sh:	aft
of Spans	Thick- ness	Estimated Cost	Thick- ness	Estimated Cost	Thick- ness	Estimated Cost	Number of Beams	Beam Type	Estimated Cost	Number of Beams	Beam Type	Estimated Cost	Number of Beams	Beam Type	Estimated Cost
10	21	\$729,874	21	\$739,298	22	\$794,249	1	21	\$729,874	1	21	\$739,298	1	22	\$794,249
11	20	\$698,110	20	\$708,083	20	\$728,029	1	20	\$698,110	1	20	\$708,083	1	20	\$728,029
12	18	\$630,991	19	\$676,468	19	\$697,312	1	18	\$630,991	1	19	\$676,468	1	19	\$697,312
13					18	\$665,997							1	18	\$665,997

PRECAST SLAB ALTERNATIVE IS PREFERRED FOR TOP DOWN CONSTRUCTION REO'D

Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida

PBS

Done by: M. LeCome

FOUNDATION LOADS and NUMBER of 18 in. PRESTRESSED PILES Alternatives 1 & 2 (Bridges 2 & 3)

November 29, 2000 Checked by: C. Li OSTRUCTIDesigni Temismis-TraiTulesignicons-analysis alternative 1882 metholosou/Trype B Bridges 2 and 3 TOPDOWN absLLNOTH

Number of Florida Double Tee = 6 Number of lanes Bridge Width 43.08 Ft.

12 spans	18	9.694 ME	1 beams	29,29 Ft.	27.29 Ft.		0.015 ksf	0.836 kH		163.0 k	326.0 k					49.1 k	35.4 k	132.5 k		\$2.9 k	44.7 k	142.8 k		471.6 k	\$27.0 k
11 spans	20	10.771 kH	I beams	31.82 Ft.	29.82 Ft.		0.015 ksf	0.836 Mf		194.2 k	388.4 k					50.9 k	36.2 ₪	137.4 k		54,4 %	46.4 k	146.9 k		507.7 k	593.4 k
10 spans	21	11.309 MF	1 beams	34.85 PL	32.85 Ft.		0.015 ksf	0.836 Mf		222.1 k	444.2 k		6.0	1.0		52.7 k	37.2 k	142,3 k		55.9 k	48.3 k	151.0 k		\$40.5 k	653.4 k
Number of Spans	Beam Type	Beam Weight (k/ft)	Number of Beams	Span Length (ft)	Beam Span (ft)	Bridge Deck Thickness (in)	Comp. Loads (ksf)	Barricz Loads (k/ft)(both sides)	Dead Load	Beam Load (End Berr)	Beam Load (Pier)	Live Load	Reduction factor	Impact factor for Substructure	I.I. Reaction per lane (END BENT)	Truck load	Lane load	Total Live Load (END BENT)	LL Reaction per lane (PIER)	Truck load	Lanc load	Total Live Load (PH:R)	Total Load	Superstructure Load (END BENT)	Superstructure Load (PIER)

4 4 13 k 13 k

4 5 127k 119k

4 5 135 k 131 k

Number of Piles Required For PIER Service Design Load (END BENT) Service Design Load (PIER)

13.0 Ft. 147.0 k 4.0 Ft.

Maximum pile spacing
Service Load Capacity of Piles
Location of Ext. pile from coping at End Bend'Pier
Number of Piles Required For END BENT

Foundation

Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Flurida

(Bridges 2 & 3)

Number of lanes

Bridge Width 43.08 Ft.

Done by: M. LeConne Checked by: C. Li

November 29, 2000 Number of Florida Double Tee = 6 FOUNDATION LOADS and NUMBER of 24 in. PRESTRESSED PILES crandysts/attention 1.82 north-bound(Type B Bridges 2 and 3 TOFDOWN,xisjLENGTH Alternatives 1 & 2

12 spans	16	10.232 kdf	1 beams	29.75 Ft.	27.75 FL		0.015 ksf	0.836 kH		173.6 k	347.1 k					49.4 k	35.5 k	133.4 k		53.2 k	45.0 k	143.6 ₺	483.1 k	548.9 k					4	4	121 &	137 k
11 spans	23	10.771 MF	1 beams	32 27 Ft.	30.27 Ft.		0.015 ksf	0.836 kdf		197.0 k	393.9 k					51.2 k	36.3 k	138.2 k		54.6 k	46.7 k	147.5 k	511.33	599.7 k					4	4	128 8	150 k
10 spans	21	11.309 Mf	1 beams	35.30 Ft.	33.30 Ft.		0.015 ksf	0.836 kJf		225.0 k	449.9 k		6.0	1.0		53.0 k	37.3 k	143.0 k		56.1 k	48.6 k	151.6 k	11 777	659.6 k		13.0 Ft.	260.0 k	4.0 P.	4	4	136 k	165 k
Number of Spans	Beam Type	Beam Weight (k/ft)	Number of Beams	Span Length (ft)	Beam Span (A)	Bridge Deck Thickness (in)	Comp. Loads (ksf)	Barrier Loads (k/ft)(both sides)	Dead Load	Beam Load (End Bent)	Beam Load (Pict)	Live Load	Reduction factor	Impact factor for Substructure	I.I. Reaction per lane (END BENT)	Truck load	Lanc load	Total Live Load (END BENT)	LL Reaction per lane (PIER)	Truck load	Lane load	Total Live Load (PIER)	Total Load (PND RENT)	Superstructure Load (PIER)	Foundation		Service Load Capacity of Piles	Location of Ext. pile from coping at End Bent/Pier	Number of Piles Required For END BENT	Number of Piles Required For PHIR	Service Design Load (FND BENT)	Service Design Load (PIER)

PBS, Done by: M. LeConne	Checked by: C. Li	November 29, 2000
Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Coaps of Engineers, Jacksonville, Florida	FOUNDATION LOADS on DRILLED SHAFT	RUCTIDESHATIaniani Trillidesign cost-analysis sharnefine LR2 northdenur (Type B Bridges 2 and 3 TOPDOWN AR(LENUTH
	Alternatives 1 & 2 (Bridges 2 & 3)	1/STRUCT/Design/Tamiami-Trai

П

The same of the sa	Z	Number of lancs	er		Number of Florida Double Tee = 6	
Number of Spans	10 spans	II spans	12 spans	13 spans		
Beam Type	Ħ	20	19	60		
Beam Weight (k/ft)	11.848 kdf	10,771 kif	10.232 kif	9.694 kJľ		
Number of Beams	l beams	1 beams	1 beams	l kams		
Span Length (R)	36.20 Ft.	33,18 Ft.	30.67 PL	28.54 FL		
Beam Span (ft)	34.20 Ft.	31.18 Ft.	28.67 Ft.	26.54 Ft.		
Bridge Deck Thickness (in)						
Comp. Loads (ksf)	0.015 lsr	0.015 ksf	0.015 ksf	0.015 ksf		
Barrier Loads (k/ft)(both sides)	0.836 kdf	0.836 kdf	0.836 kJr	0.836 kH		
Dead Load						
Beam Load (End Bett)	240.4 k	202.5 %	178.9 K	158.8 k		
Beam Load (Pier)	480.9 k	405.0 k	357.8 k	317.6 k		
Live Load						
Reduction factor	6.0					
Impact factor for Substructure	1.0					
I.I. Reaction per lane (END BENT)						
Truck load	53.4 k	51.7 k	50.1 k	48.5 k		
Lanc load	37.6 k	36.6 k	35.8 K	35.1 k		
Total Live Load (END BENT)	144.3 k	139.7 k	135.2 k	130.8 k		
I.I. Reaction per lane (PIEK)						
Truck load	56.5 k	55.1 k	53.7 k	52.4 k		
Lanc load	49.2 k	47.2 k	45.6 k	44,3 k		
Total Live Load (PIER)	152.6 k	148.8 K	145.1 k	141.4 k		
Total Load Superstanding Load (END BENT)	367.68	547,4 k	519.3 k	494.8 k		
Superstructure Load (PIER)	711.1 k	631.4 k	580.5 k	536.6 k		
Foundation	160 %					
Location of Exr. shaft from coping at End Bent.	6.0 FL					
Number of Piles Required For END BENT	3	m	М	3		
Number of Piles Required For PIER	~1	7	C-8	2		
Service Design Load (END BENT)	197 k	182 k	173 k	165 k		
Service Design Load (PIER)	356 k	316k	290 k	268 K		

and the second state of th

Corps of Engineers, Jacksonville, Florida

Done by: M. LeComte

Alternatives 1 & 2 (Bridges 2 & 3)

INTERMEDIATE BENTS / PIERS

Checked by: C. Li

1/STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 1&2 northdetour\[Type B Bridges 2 and 3 TOPDOWN.xls]LENGTH

November 29, 2000

Pier Section (2 Drilled Shafts)

Foundation Type	18 in. Pile	24 in. Pile	36 in. Shaft
Estimated Pile Embedment Length	19 ft.	19 ft.	14 ft.
Pile Length Above Ground	8 ft.	8 ft.	8 ft.
Total Length of Pile	27 ft.	27 ft.	22 ft.
Estimated Cost of One Pile/Drilled Shaft	\$891	\$1,242	\$4,840
Bent cap cross sectional area	9.0 sq.ft	9.0 sq.ft	12.0 sq.ft
Bent Cap Length	43 ft.	43 ft.	43 ft.
Total Concrete Volume	14.4 CY	14.4 CY	19.1 CY
Reinforcement at 145 lbs/CY	2082 lbs	2082 lbs	2776 lbs
Estimated Cost of Bent Cap	\$6,897	\$6,897	\$9,196

PRESTRESSED PILES	18 in.	24 in.	DRILLED SHAFT	36 in.
Number of test loads per bridge	2 ca.	2 ea.	Number of test loads per bridge	1 ea.
			Core (Shaft Excavation)	
2011/10/2017			Length of temporary casing	
Est, total cost of test piles w/ dynamic load test per bridge	\$13,440	\$13,440	% of casing splice	
			Excavation, unclassified shaft	100
% of pile splice	10%	10%	Drilled shaft sidewall overreaming	
% of pile hole preformed	100%	100%	Excavation, unclassified extra depth	

Number	Number o Requi		Number of Drilled Shafts	30000	st of Piles nt / Pier	Total Cost of Drilled Shaft		al Estimated of ONE Pic	
Spans	18 in.	24 in.	36 in.	18" Pile	24" Pile	per Pier	18" Pile	24" Pile	36" Shaft
10	5	4	2	\$7,003	\$7,329	\$15,236	\$13,900	\$14,226	\$24,431
11	5	4	2	\$6,854	\$7,180	\$14,680	\$13,751	\$14,077	\$23,876
12	4	4	2	\$5,630	\$7,058	\$14,225	\$12,527	\$13,955	\$23,421
13			2			\$13,847			\$23,043
				-					

Corps of Engineers, Jacksonville, Florida

PBS,

Done by: M. LeComte

Checked by: C. Li

CHECKER BY, C. LI

November 29, 2000

Alternatives 1 & 2 (Bridges 2 & 3)

END BENTS

:\STRUCT\Design\Tamiami-Trait\design\cost-analysis\alternative 1&2 northdetour\[Type B Bridges 2 and 3 TOPDOWN.xls]LEN

r		of One Pile/Drilled Shaft t cap cross sectional area	7.5 sq.ft	7.5 sq.ft	12.0 sq.ft
	Dell	Bent Cap Length	43 ft.	43 ft.	43 ft.
ı		Total Concrete Volume	12.0 CY	12.0 CY	19.1 CY
	Reinforcement at	145 lbs/CY	1735 lbs	1735 lbs	2776 lbs
		Estimated Cost of Bent Cap	\$5,747	\$5,747	\$9,196

PRESTRESSED PILES	18 in.	24 in.	DRILLED SHAFTS	36 in.
			Core(Shaft Excavation)	
			Length of temporary casing	
			Percentage of casing splice	
			Excavation, unclassified shaft	
% of pile splice	10%	10%	Drilled shaft sidewall overreaming	
% Pile hole preformed	100%	100%	xcavation, unclassified extra depth	

Number	Number of Piles Required ¹		Number of Drilled Shafts ²	Total Co	st of Piles	Total Cost of Drilled Shaft	A CALLER TO			
of				per Be	nt / Pier					
Spans	18 in.	24 in.	36 in.	18" Pile	24" Pile	per Pier	18" Pile	24" Pile	36" Shaft	
10	4	4	3	\$4,408	\$5,836	\$14,520	\$10,155	\$11,583	\$23,716	
11	4	4	3	\$4,408	\$5,836	\$14,520	\$10,155	\$11,583	\$23,716	
12	4	4	3	\$4,408	S5,836	\$14,520	\$10,155	\$11,583	\$23,716	
13			3			\$14,520			\$23,716	
	1									
			-							
			-							

¹Includes wingwall piles for Type IV, III, II beams.

²Includes wingwall drilled shafts for Type IV, III, II beams.

Corps of Engineers, Jacksonville, Florida

SUBSTRUCTURE & SUPERSTRUCTURE ALTERNATIVES COMPARISON

Checked by: C. Li

*STRUCT\Design\Tamiami-Traif\design\cost-analysis\alternative 1&2 northdesoaf\(Type B\) Bridges 2 and 3 TOPDOWN.xls\(LENGTH\)

Alternatives 1 & 2

(Bridges 2 & 3)

November 29, 2000

Number	ADJUSTED SPAN LENGTH			Number	Cost of Substructure			Cost of Superstructure			Total Cost of Structure		
of Spans	18 in. Pile	24 in. Pile	36 in. Shaft	of Piers	18 in. Pile	24 in. Pile	36 in. Shaft	18 in. Pile	24 in. Pile	36 in. Shaft	18 in. Pile	24 in. Pile	36 in. Shaft
10	34.85 Ft.	35.30 Ft.	36.20 Ft.	9	\$145,413	\$151,203	\$267,315	\$729,874	\$739,298	\$794,249	\$875,287	\$890,501	\$1,061,564
11	31.82 Ft.	32.27 Ft.	33.18 Ft.	10	\$157,820	\$163,936	\$286,191	\$698,110	\$708,083	\$728,029	\$855,930	\$872,019	\$1,014,219
12	29.29 Ft.	29.75 Ft.	30.67 Ft.	11	\$158,105	\$176,669	\$305,067	\$630,991	\$676,468	\$697,312	\$789,096	\$853,137	\$1,002,378
13			28.54 Ft.	12			\$323,943			\$665,997			\$989,939
1.17	11-3-		respiratory	M - B - M - M - M - M - M - M - M - M -	har suce	P. A. M. Herry	1. 101.000 104.00	* H		(+/	*		

SUMMARY OF MOST ECONOMICAL ALTERNATIVES FOR EACH SPAN ARRANGEMENT:

Number of Spans	Estimated Cost	Foundation Alternative	Superstructure Alternative	Number of Spans	Number of Beams	Number of Piles or Drilled Shafts	Total Length of Piles or Drilled Shafts	Number of Test Piles	Total Length of Test Piles
10	5875,287	18 in.	21	10	1	51	1377 ft	2	84 ft
11	\$855,930	18 in.	20	11	1	56	1512 ft	2	84 ft
12	\$789,096	18 in.	18	12	1	50	1350 n	2	84 ft
13	\$989,939	36 in.	18	13	1	30	660 ft		

\$789,096 <--- Minimum

RESULT OF COST COMPARISON STUDY:

Most economical superstructure type:

18 in. thick precast slab

Most economical substructure type: 18 in.

Optimum Span Arrangement: 12 spans at 29.29 FT.

Total bridge length: 351.50 Ft.

Total number of beams: N/A

Total length of beams: N/A

Number of piles or drilled Shafts: 50

Length of Piles or drilled Shafts: 1350.00 Ft.

Corps of Engineers, Jacksonville, Florida

\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 1&2 northdetour\[Type B Bridges 2 and 3 TOPDOWN

Alternatives 1 & 2 (Bridges 2 & 3)

ESTIMATE OF PROBABLE CONSTRUCTION COSTS

PBS,

Done by: M. LeComte

Checked by: C. Li

November 29, 2000

Item	Quantity	Units	Unit Price	Amount
SUPERSTRUCTURE:				
Concrete	0	CY	\$310	
Reinforcing Steel	0	LBS	\$0.45	
Bridge Floor Grooving	1562	SY	\$2.50	\$3,906
Traffic Railing Barrier	703.0	FT	\$35	\$24,605
Expansion Joints ³	86.2	FT	\$84	\$7,238
18 in, thick precast slab	841.3	CY	\$750	\$630,991
Neoprene Bearing Pads	23.337	CF	S425	\$9,918
		Superstr	ucture Subtotal	\$676,658
SUBSTRUCTURE:				
Concrete	181.9	CY	\$415	\$75,492
Reinforcing Steel ²	26377	LBS	\$0.45	\$11,869
Pile Hole, Preformed	50	EA	\$200	\$10,000
Test Piles	84	Ft.	\$160	\$13,440
18 in. Prestressed Concrete Piles (F & I)	1350	Ft.	\$33	\$44,550
Pile Splices	5	EA	\$110	\$550
Drilled shaft	0	LF	\$220	
Test load for drilled shaft	0	EA	\$50,000	
Core (Shaft Excavation)	0	LF		
Temporary casing	0	LF		
Casing splice	0	EA		
Excavation, unclassified shaft	0	LF		
Drilled shaft sidewall overreaming	0	LF		
Excavation, unclassified extra depth	0	LF		
		Substr	ructure Subtotal	\$155,901
		Constructio	n Cost Subtotal	\$832,559
Mobilization (5% of Construction Cost)	1	LS		\$ 41,628
Contingency (15% of Construction Cost)	1	LS		\$ 124,884
TOP DOWN Construction (20% of Construction Cost)	1	LS		S 166,512
	Т	otal Cons	truction Cost	\$1,165,583

¹Ratio of reinforcement to superstructure concrete:

205 Lbs/CY.

Deck Square Footage (Ft.)

Cost Per Square Foot

15,144

\$76.97/sf

²Ratio of reinforcement to substructure concrete:

145 Lbs/CY.

³Number of expansion piers:

2

Corps of Engineers, Jacksonville, Florida

ESTIMATE OF ADDITIONAL COST OF STRUCTURES

I:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 2Cwetlandside\[Walls.xls]CantWall

PBS)
Done by: F. ORNARI

Checked by: S.YETIMOGLU

November 7, 2000

Project Length

59220.00 Ft

Total Bridge Length

Alternative 2C

1641.00 Ft (2 - 475ft long, 2 - 345.5ft long bridges)

UNIT PRICE	QTY	TOTAL PRICE
\$157.30	57579 LF	\$9,057,389.96
\$159.28	57579 LF	\$9,171,099.59
\$331.68	57579 LF	\$19,097,648.11
\$35.00	57579 LF	\$2,015,265.00
	\$157.30 \$159.28 \$331.68	\$157.30 57579 LF \$159.28 57579 LF \$331.68 57579 LF

* TOTAL: \$39,341,403

^{*} NOTE: This cost is additional to the cost of 4 bridges in Alternative 2.

Corps of Engineers, Jacksonville, Florida

Done by: S. YETIMOGLU

Checked by: F. ORNARLI

where the compared to the state of the contract of the contrac

Alternative 2C

TEMPORARY SHEET PILE COST

\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 2Cwetlandside\[Walls.xls]CantWall

November 7, 2000

Height of Temporary sheet pile	13.00 Ft (PZ27)	
Soil anchor spacing	12.00 Ft	
Spacing of Tie back w/ deadman	12.00 Ft	
Deadman size		
Length	5.00 Ft	
Width	5.00 Ft	
Thickness	0.75 Ft	
Tie rod length	20.00 Ft	
Tie rod size	1.75 in (No. 14 rebar))
Wale	50.00 lbs/Ft	

ITEM	QTY	35	TOTAL/Ft.
* Temporary sheet pile	13.00 Ft	\$16	\$208.00
Soil anchor	0.083 each/ft	\$1,200	\$100.00
Deadman	0.06 CY/ft	\$310	\$17.94
Tie rod	13 Lbs	\$0.45	S5.74
Wale	50 Lbs	\$0.80	\$40.00
	TOTA	AL COST/Ft.	\$331.68

^{*} Unit price used is for permanent sheet pile since sheet piles cannot be removed due to tie rods burried under the new roadway.

Corps of Engineers, Jacksonville, Florida

CONCRETE CANTILEVER RETAINING WALL

STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 2Cwetlandside\[Walls,xls]CantWall

Alternative 2C

Done by: F. ORNARLI Checked by: S.YBTIMOGLU

November 7, 2000

DESIGN DATA

Soil Parameters and Loading Information:		Wall and Footing Information:	
Moist Unit Weight of Soil (pcf)	105,00	Top of Wall Thickness (inch)	11.000
Saturated Unit Weight of Soil (pcf)	120.00	Back Slope of Wall (inch/foot)	0,000
Coefficient of Friction	0.40	Heel Length (feet)	3.582
Crane Load Surcharge (psf)	0.00	Footing Length (feet)	4.500
Angle of internal friction o (deg)	30,00	Footing Thickness (inch)	12,000
Wall Friction angle δ (deg)	17.00	Toe Length (feet)	0.001
Angle of back face of wall α (deg)	90.00		
Slope of back fill β (deg)	0.00	Wall Design Data:	
Ka	0.299	Dead Load - Load Factor	1,40
Equiv. Passive Fluid Pressure (pcf)	35 300,000	L.L. & Soil Pres Load Factor	1.70
Angle of Int. Friction for Key (deg.)	30.000	Concrete Strength (ksi)	4.00
		Reinforcing Steel (ksi)	60,00
Soil and Water Elevations (NGVD - feet):		Cover - Bottom of Footing (inch)	3.00
Top of Wall Elevation	13.500	Cover - Top of Footing (inch)	1.50
Top of Back Soil Elevation	13.500	Cover - Wall (inch)	2.00
Top of Front Soil Elevation	9.500		
Back Water Elevation	11.500	Additional Input	
Front Water Elevation	10,500	Distance from F.F. Key to Toe	1.000 ft.
Top of Footing Elevation	8,500	Depth of Key	6,0 in,
		Rebar Size (wall)	# 8
		Rebar Size (Footing - Toe)	#9
		Rebar Size (Footing - Heel)	# 5
	ADDITIONAL LOAD	s	
Dead Loads:		Live Loads:	
Moment (ft-kip/ft)	0,000	Moment (ft-kip/ft)	0,000
Shear (Kips/ft)	0,000	Shear (Kips/ft)	0,000
Vertical Load (kips/ft)	0,000	Vertical Load (kips/ft)	0,000
Wind Loads:		Live Load Surcharge(ksf)	0,210
Moment (ft-kip/ft)	0,000	samena ayengen yengan ayenaky nin 1963 Military (4.7 a Military	-
Shear (Kips/ft)	0.000	Crane Surcharge load (kips)	0.00
Vertical Load (kips/ft)	0.000	Over Stress Factor	1.00

Note:

- 1) Live loads, Wind loads and Liveload Surcharge are not considered while designing for Crane Surcharge Loads.
- 2) The allowable 25% overstress for Wind Loads is not considered in the design to be conservative.
- 3) Downward loads, loads and moments causing overtruning are positive.

Corps of Engineers, Jacksonville, Florida

CONCRETE CANTILEVER RETAINING WALL

htSTRUCT\Design\Tamiumi-Trail\design\cost-analysis\alternative 2Cwetlandske\(\text{Walls.xls}\)CantWall

Alternative 2C

F. ORNARLI Checked by: S.YETIMOGLU

November 7, 2000

		Back Face	Pressures		Front F	ace Pressures		Net Bac	k Pressures
Distance from Top of Wall	Active Pressure of Soil	Water Adjust.	Surcharge	Total Back Face Pressure	Active Pressure from Soil	Water Pressure	Total Front Face Pressure	Without Surcharge	With Surcharg
feet	psf	psf	psf	psf	psf	psf	psf	psf	psť
0,000	0,000	0.000	0,000	0,000	0,000	0.000	0,000 ,	0.000	0,000
0.250	7.860	0,000	0.000	7.860	0.000	0.000	0.000	7,860	7.860
0.500	15.721	0.000	0.000	15.721	0,000	0.000	0.000	15.721	15 721
0.750	23.581	0.000	0.000	23.581	0.000	0.000	0.000	23,581	23,581
1.000	31.441	0.000	0.000	31.441	0,000	0.000	0,000	31.441	31 441
1,250	39.301	0.000	0.000	39,301	0,000	0.000	0.000	39.301	39.301
1.500	47 162	0.000	0,000	47,162	0.000	0.000	0.000	47,162	47 162
1.750	55,022	0.000	0.000	55.022	0.000	0,000	0,000	55.022	55 022
2.000	62,882	0.000	0.000	62.882	0,000	0,000	0,000	62.882	62.882
2.250	70,742	12,052	0.000	82.794	0.000	0.000	0.000	82.794	82,794
2.500	78.603	24.103	0.000	102,706	0.000	0.000	0.000	102,706	102,705
2,750	86,463	36.155	0,000	122.618	0.000	0.000	0.000	122,618	122.618
3.000	94.323	48.207	0.000	142,530	0.000	0.000	0.000	142 530	142.530
3.250	102 183	60 258	0,000	162,442	0.000	15.600	15.600	146.842	146,842
3 500	110.044	72,310	0,000	182.354	0.000	31,200	31,200	151.154	151 154
3 750	117.904	84,362	0.000	202.265	0.000	46,800	46.800	155.465	155.465
4,000	125,764	96 413	0.000	222.177	0.000	62.400	62.400	159.777	159.777
4,250	133.624	108.465	0.000	242.089	0.000	78,000	78.000	164.089	164.089
4.500	141,485	120.517	0.000	262.001	0.000	93,600	93 600	168 401	168,401
4.750	149.345	132.568	0.000	281,913	0.000	109.200	109.200	172.713	172.713
									_

WITHOUT CRANE SURCHARGE

301.825

381.473

0.000

0.000

0.000

0,000

124.800

187,200

124,800

187 200

177.025

194.273

177.025

194,273

Calculation of Drivin	g Moment and Shear
-----------------------	--------------------

157.205

188,646

5,000

6.000

Distance from Top of Wall	Net Back Pressure	Increment Shear	Total Shear	Increment Moment	Total Moment
feet	psf	kips	kips	fl-kips	ft-kips
0.000	62.882	0.000	0,000	0.000	0.000
0.250	70.742	0,017	0.017	0.002	0.002
0.500	78,603	0.019	0.035	0,006	0.009
0.750	86.463	0,021	0.056	0.011	0.020
1.000	94.323	0,023	0.079	0.017	0.037
1,250	102,183	0.025	0.103	0.023	0.059
1.500	110.044	0,027	0.130	0.029	0.088
1.750	117,904	0.028	0.158	0.036	0.124
2.000	125,764	0.030	0.189	0.043	0,168
2.250	145 676	0.034	0,223	0.051	0.219
2.500	165,588	0.039	0.261	0,060	0.279
2.750	185.500	0.044	0.305	0.071	0.350
3.000	205.412	0.049	0,354	0.082	0.432
3.250	209,724	0,052	0.406	0.095	0.528
3.500	214,036	0.053	0.459	0.108	0.636
3.750	218.348	0.054	0.513	0.122	0.757
4 000	222.659	0,055	0.568	0 135	0.892
4.250	226,971	0.056	0.624	0.149	1,041
4.500	231.283	0.057	0.682	0.163	1.205
4.750	235,595	0.058	0.740	0.178	1.382
5,000	239,907	0.059	0.800	0.192	1.575
6.000	257.155	0.249	1.048	0.922	2.497

144.620

192,826

Driving N	Moment (ft-kips)
2.497	1.365
(w/ LL & WL)	(w/o LL & WL)
Resisting	Moment (ft-kips)
7.09	5.049
(w/ LL &	(w/o LL & WL)
F.S. agai	nst Overturning
2 838	

Driving Shear (kips) 1.048 0.671 (w/ LL & (w/o LL & WL) Bouyant Dead Load Reaction (Kips) 2.422 3.174 (w/ LL & (w/o LL & WL) Frictional Resistance (kips) 0.969 1.270 (w/ LL & (w/o LL & WL) F.S. against Sliding 1.211

> Depth of Key 60 in.

Corps of Engineers, Jacksonville, Florida

Alternative 2C

CONCRETE CANTILEVER RETAINING WALL

I:\STRUCT\Design\Tamiami-Traif\design\cost-analysis\alternative 2Cwetlandside\[Walls.xls]CantWall

Done by: F. ORNARLI Checked by: S.YETIMOGLU November 7, 2000

Element	Weight	Mom. Arm	Moment
	kips	feet	ft-kips
Base of Foundation	0.675	2.250	1.519
Constant Thickness Wall	0,688	0,459	0.316
Sloped Backface of Wall	0,000	0.918	0.000
Water over Soil over Toe	0.000	0,001	0.000
Soil over Toe	0,000	0.001	0.000
Soil above Base	1.881	2.709	5,095
Soil above Wall Taper	000,0	0.918	0.000
Water adjust above Base	0.161	2.709	0.437
Water adjust above Wall Taper	0,000	0.918	0.000
Uniform Bouyancy	-0.842	2.250	-1.895
Differential Bouyancy	-0.140	3.000	-0.421
Additional Vertical Load	0.000	0.459	0.000
Additional L.L. Surcharge	0.752	2.709	2.038
Total	3 174		7.087

Bearing against Key (F.S =1.5) 0.605 ksf
Distance from F.F. Key to Toe 1.000 ft.
Depth of Passive Resistance
2,077 feet
Passive Resistance
0.647 kips
S.F. against Sliding
1 879

WITH CRANE SURCHARGE

Calculation of Driving Moment and Shear

Distance from Top of Wall	Net Back Pressure	Increment Shear	Total Shear	Increment Moment	Total Moment
feet	psť	kips	kips	ft-kips	ft-kips
0.000	0,000	0.000	0.000	0.000	0.000
0,250	7,860	0.001	0.001	0.000	0,000
0.500	15.721	0.003	0.004	0,001	0.001
0.750	23.581	0.005	0,009	0.002	0.002
1.000	31.441	0,007	0.016	0.003	0.005
1 250	39.301	0,009	0.025	0.005	0.010
1.500	47,162	0.011	0.035	0.007	0.018
1.750	55,022	0.013	0.048	0.010	0.028
2.000	62.882	0.015	0,063	0.014	0.042
2.250	82.794	0.018	0.081	0.018	0.060
2.500	102.706	0.023	0,104	0.023	0.083
2.750	122.618	0,028	0.132	0.029	0.112
3.000	142,530	0.033	0.166	0.037	0.150
3,250	146.842	0.036	0.202	0.046	0.195
3.500	151.154	0.037	0.239	0.055	0.250
3,750	155,465	0.038	0.277	0.065	0,315
4.000	159.777	0.039	0,317	0.074	0.389
4.250	164,089	0.040	0.357	0.084	0.473
4,500	168.401	0.042	0,399	0,094	0,568
4.750	172.713	0.043	0,441	0.105	0.673
5.000	177.025	0,044	0.485	0.116	0.789
6.000	194 273	0.186	0,671	0.577	1.365

Driving Momer	ıt
1.365	5 ft-kips
Resisting Mome	nt
5.049	ft-kips
F.S. against Overtu	ming
3.698	
Driving Shear	
0.63	71 kips
ouvant Dead Load R	teaction
2.43	22 kips
Frictional Resista	nce
0.96	59 kips
F.S. against Slide	ine
1.444	
Depth of Key	6.0 in.

Corps of Engineers, Jacksonville, Florida

Alternative 2C

Element

Calculation of Resisting Moment and Shear

CONCRETE CANTILEVER RETAINING WALL

Weight

[:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative_2Cwetlandside\[Walls.xls]CantWall

Done by: F. ORNARLI Checked by: S.YETIMOGLU November 7, 2000

	kips	feet	ft-kips	Bearing against Key (F.S.=1.5)
Base of Foundation	0.675	2.250	1.519	0.075 ksf
Constant Thickness Wall	0.688	0.459	0.316	<i>i</i>
Sloped Backface of Wall	0.000	0.918	0,000	Distance from F.F. Key to Toe
Water over Soil over Toe	0.000	0.001	0.000	1.000 ft.
Soil over Toe	0 000	0.001	0.000	D
Soil above Base	1,881	2,709	5.095	Depth of Passive Resistance
Soil above Wall Taper	0.000	0.918	0.000	2,077 feet
Water adjust above Base	0.161	2.709	0.437	
Water adjust above Wall Taper	0,000	0,918	0.000	Passive Resistance
Uniform Bouyancy	-0.842	2,250	-1.895	0.647 kips
Differential Bouyancy	-0.140	3.000	-0,421	
Additional Vertical Load	0,000	0.459	0.000	S F against Sliding
Surcharge	0.000	2.709	0.000	2.409
Total w/o Surcharge Vertical Load	2.422		5.049	
Total w/ Surcharge Vertical Load	2,422		5.049	1

Mom. Arm

Moment

Corps of Engineers, Jacksonville, Florida

CONCRETE CANTILEVER RETAINING WALL

STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 2Cwetlandside\[Walls, xls |CantWall

Alternative 2C

November 7, 2000

	Bearing Capacity Anal	ysis	
Service Load Design		Factored Load Design	
Bearing Capacity w/o Surcharge Vertical Load			
Average Bearing Stress (ksf)	0.705	Average Bearing Stress (ksf)	1.293
Section Modulus of Footing (ft^3)	3.375	Section Modulus of Footing (fl^3)	3.375
Eccentricity (feet)	0.804	Eccentricity (feet)	0.717
Bearing Stress Due to Moment (ksf)	0.756	Bearing Stress Due to Moment (ksf)	1 237
Net Length of Bearing (feet)	4.338	Length of Bearing (feet)	4.500
Net Bearing Stress at Toe (ksf)	1,463	Bearing Stress at Toe (kst)	2.530
Net Bearing Stress at Heel (ksf)	0,000	Bearing Stress at Heel (ksf)	0.056
Bearing Capacity w/ Surcharge Vertical Load			
Average Bearing Stress (ksf)	0.538	Average Bearing Stress (ksf)	1.059
Section Modulus of Footing (ft^3)	3.375	Section Modulus of Footing (ft°3)	3.375
Eccentricity (feet)	0.729	Eccentricity (feet)	0.573
Bearing Stress Due to Moment (ksf)	0.523	Bearing Stress Due to Moment (ksf)	0.810
Net Length of Bearing (feet)	4.500	Length of Bearing (feet)	4.500
Net Bearing Stress at Toe (ksf)	1.061	Bearing Stress at Toe (ksf)	1.869
Net Bearing Stress at Heel (ksf)	0.015	Bearing Stress at Heel (ksf)	0.249
F	oundation Design (Fact	tored)	
Toe Design Pressures (ksf):		Heel Design Pressures (ksf):	
Bearing Pressures w/o Surcharge Vertical Load	100000	MANY CONTRACTOR	
Downward Pressure Toe End	0.291	Downward Pressure Heel End	1,008
Downward Pressure Wall End	0.291	Downward Pressure Wall End	1,008
Upward Pressure Toe End	-2.530	Upward Pressure Heel End	-0.056
Upward Pressure Wall End	-2,529	Upward Pressure Wall End	-2.026
Bearing Pressures w/ Surcharge Vertical Load			
Downward Pressure Toe End	0.291	Downward Pressure Heel End	1,008
Downward Pressure Wall End	0.291	Downward Pressure Wall End	1,008
Upward Pressure Toe End	-1.869	Upward Pressure Heel End	-0.249
Upward Pressure Wall End	-1.869	Upward Pressure Wall End	-1.539
Foundation Reinforcement:			
Main Toe Reinforcing	#9	Main Heel Reinforcing	# 5
Effective Depth (inches)	8.438	Effective Depth (inches)	10.188
Shear in Toe (kips)	0.002	Shear in Heel (kips)	0.408
Shear Stress (ksi)	0.000	Shear Stress (ksi)	0.003
Moment in Toe (ft-kips) (Reduced)	0,000	Moment in Heel (ft-kips) (Redu.)	2,110
As-required [Bottom] (in^2/ft)	0.000	As-required [Top] (in^2/ft)	0.046
As-max (in^2/ft)	2.165	As-max (in^2/ft)	2.614
As-min (in^2/ft)	0.338	As-min (in^2/ft)	0,408

Corps of Engineers, Jacksonville, Florida

CONCRETE CANTILEVER RETAINING WALL Alternative 2C

E-STRUCT-Design/Tamiami-Trail/design/cost-analysis/alternative 2Cwerlandside/(Walls, xls)CantWall

Checked by: S.YETIMOGLU November 7, 2000

WITHOUT CRANE SURCHARGE

Wall Reinforcing Requirements - Shear Check (Factored)

Max. Rebar Size	W	# 8	W	Allowable Fac	tored Shear Stress	0,108	0,108 ksi		
Distance from Top of Wall	Effective Depth of Rebar	Net D.L. Back Pressure	Net L.L. Back Pressure	Increment Shear	Total Shear	Shear Stress	Status		
feet	inches	psf	psf	kips	kips	ksi			
0.000	8,500	0.000	62,882	0.000	0.000	0.000	O.K.		
0.250	8,500	7,860 .	62.882	0.028		0.000	-O.K.		
0.500	8.500	15.721	62.882	0.032	0.060	0.001	O.K.		
0.750	8,500	23.581	62,882	0.035	0.095	0.001	O.K.		
1.000	8,500	31,441	62,882	0.038	0.134	0.001	O.K		
1.250	8.500	39 301	62.882	0.042	0.175	0.002	O.K.		
1.500	8.500	47.162	62.882	0.045	0.220	0.002	O.K.		
1.750	8.500	55,022	62,882	0.048	0.269	0.003	O.K.		
2,000	8.500	62.882	62.882	0.052	0.321	0.003	O.K.		
2.250	8 500	82.794	62,882	0,058	0,378	0.004	O.K.		
2.500	8.500	102.706	62,882	0.066	0.445	0.004	O.K.		
2,750	8,500	122.618	62.882	0.075	0.519	0.005	O.K.		
3,000	8.500	142.530	62,882	0.083	0,602	0,006	O.K.		
3.250	8.500	146.842	62,882	0,088	0.690	0.007	O.K.		
3,500	8.500	151.154	62.882	0.090	0.780	0.008	O.K.		
3.750	8,500	155,465	62.882	0.092	0.872	0.009	O.K.		
4,000	8,500	159.777	62.882	0.094	0,966	0,009	O.K.		
4.250	8.500	164.089	62.882	0.096	1.062	0.010	O.K.		
4.500	8,500	168,401	62.882	0.097	1.159	0.011	O.K.		
4.750	8.500	172.713	62.882	0,099	1,258	0.012	O.K.		
5.000	8.500	177,025	62.882	0.101	1.359	0.013	O.K.		
6.000	N/A	194.273	62.882	0.423	1,782	N/A	N/A		

WITH CRANE SURCHARGE

Max Rebar Size		# 8		Allowable Fac	tored Shear Stress	0.108	ksi
Distance from Top of Wall	Effective Depth of Rebar	Net D.L. Back Pressure	Net L.L. Back Pressure	Increment Shear	Total Shear	Shear Stress	Status
feet	inches	psf	psf	kips	kips	ksi	
0.000	8,500	0.000	0.000	0.000	0.000	0.000	O.K.
0.250	8,500	7.860	0.000	0.002	0.002	0,000	O.K.
0.500	8.500	15.721	0.000	0.005	0.007	0.000	O.K.
0.750	8,500	23,581	0.000	0.008	0.015	0.000	O.K.
1.000	8.500	31.441	0.000	0.012	0.027	0.000	O.K
1.250	8.500	39.301	0.000	0.015	0.042	0.000	O.K.
1.500	8.500	47.162	0.000	0.018	0.060	0.001	O.K
1,750	8,500	55.022	0.000	0.022	0.082	0.001	O.K
2.000	8.500	62.882	0.000	0.025	0.107	0,001	O.K
2.250	8.500	82,794	0,000	0.031	0.138	0.001	O.K
2,500	8,500	102.706	0.000	0.039	0.177	0.002	O.K
2.750	8.500	122.618	0.000	0.048	0.225	0,002	O.K
3 000	8.500	142.530	0,000	0,056	0.281	0.003	O.K
3.250	8,500	146,842	0.000	0.061	0.343	0.003	O.K
3.500	8,500	151.154	0.000	0.063	0.406	0.004	O.K
3.750	8.500	155,465	0.000	0.065	0.471	0.005	O.K
4 000	8 500	159.777	0.000	0.067	0.538	0.005	O.K
4.250	8,500	164,089	0.000	0.069	0.607	0.006	O.K
4 500	8 500	168.401	0.000	0.071	0.678	0.007	O.K
4.750	8.500	172.713	0.000	0.072	0.750	0.007	O.K
5 000	8.500	177 025	0.000	0.074	0.825	0.008	O.K
6,000	N/A	194.273	0.000	0.316	1.140	N/A	N/A

Corps of Engineers, Jacksonville, Florida

CONCRETE CANTILEVER RETAINING WALL

\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 2Cwetlandside\[Walls.xls]CantWall

Done by: F. ORNARLI Checked by: S.YETIMOGLU November 7, 2000

WITHOUT CRANE SURCHARGE

Wall Reinforcing Requirements - Moment Check (Factored)

Alternative 2C

Distance from Top of Wall	Effective Depth of Rebar	Net D.L. Back Pressure	Net L.L. Back Pressure	Total Shear	Total Moment	Area of Steel Required	As-max.	As-min.
feet	inches	psf	psf	kips	ft-kips	in^2/ft	in^2/ft	in^2/ft
0,000	8.500	0.000	62.882	0.000	0.000	0,000	2.181	0.340
0.250	8.500	. 7.860	62,882	0.028	0.003	0.000	2.181	- 0,340
0.500	8.500	15,721	62.882	0.060	0.014	0.000	2,181	0.340
0.750	8,500	23.581	62.882	0.095	0.034	0,001	2 181	0.340
1,000	8.500	31.441	62,882	0.134	0.062	0.002	2.181	0.340
1.250	8,500	39,301	62.882	0.175	0.101	0.003	2,181	0,340
1,500	8,500	47.162	62,882	0.220	0.150	0.004	2.181	0.340
1.750	8.500	55.022	62,882	0.269	0.211	0.006	2.181	0.340
2.000	8,500	62.882	62.882	0.321	0.285	0.007	2.181	0.340
2.250	8,500	82 794	62.882	0.378	0.372	0.010	2.181	0.340
2 500	8 500	102.706	62,882	0.445	0.475	0.012	2.181	0.340
2.750	8,500	122,618	62.882	0.519	0.595	0.016	2,181	0,340
3.000	8.500	142.530	62.882	0.602	0.735	0.019	2.181	0.340
3,250	8.500	146.842	62,882	0,690	0.897	0.023	2.181	0.340
3,500	8.500	151.154	62,882	0.780	1.081	0.028	2.181	0.340
3.750	8.500	155,465	62,882	0.872	1.287	0.034	2,181	0.340
4.000	8,500	159.777	62.882	0.966	1.517	0.040	2.181	0.340
4.250	8,500	164.089	62.882	1.062	1,770	0,046	2.181	0.340
4,500	8,500	168,401	62.882	1,159	2.048	0.054	2.181	0.340
4.750	8.500	172,713	62.882	1.258	2.350	0.062	2,181	0.340
5.000	8,500	177.025	62.882	1.359	2,677	0.070	2.181	0.340
6.000	N/A	194,273	62.882	1.782	4.245	N/A	N/A	N/A

WITH CRANE SURCHARGE

Wall Reinforcing Requirements - Moment Check (Factored)

Distance from Top of Wall	Effective Depth of Rebar	Net D.L. Back Pressure	Net L.L. Back Pressure	Total Shear	Total Moment	Area of Steel Required (redu.)	As-max.	As-min.
feet	inches	psf	psf	kips	ft-kips	in^2/ft	in^2/ft	in^2/ft
0.000,0	8 500	0.000	0,000	0.000	0.000	0.000	2.181	0.340
0 250	8.500	7,860	0.000	0.002	0.000	0.000	2,181	0.340
0.500	8.500	15.721	0.000	0.007	0,001	0.000	2,181	0.340
0.750	8.500	23.581	0.000	0,015	0.004	0.000	2.181	0.340
1.000	8.500	31,441	0.000	0.027	0.009	0.000	2.181	0.340
1,250	8,500	39.301	0.000	0.042	0,017	0.000	2.181	0.340
1.500	8.500	47.162	0,000	0,060	0.030	0.001	2.181	0.340
1.750	8.500	55,022	0.000	0.082	0.048	0.001	2.181	0.340
2,000	8,500	62.882	0.000	0,107	0.071	0.002	2.181	0.340
2.250	8.500	82,794	0.000	0.138	0.102	0.003	2.181	0.340
2.500	8,500	102.706	0.000	0.177	0.141	0.004	2.181	0.340
2.750	8.500	122.618	0,000	0.225	0.191	0.005	2.181	0.340
3.000	8.500	142,530	0,000	0.281	0.254	0.007	2.181	0.340
3 250	8,500	146.842	0.000	0.343	0.332	0.009	2,181	0.340
3,500	8.500	151.154	0.000	0.406	0.426	0.011	2.181	0.340
3.750	8.500	155,465	0.000	0.471	0.536	0.014	2.181	0.340
4.000	8.500	159,777	0.000	0,538	0.662	0.017	2.181	0.340
4.250	8.500	164,089	0.000	0.607	0.805	0.021	2.181	0.340
4.500	8,500	168.401	0.000	0.678	0.966	0.025	2.181	0.340
4.750	8.500	172.713	0.000	0.750	1.144	0.030	2 181	0.340
5.000	8,500	177,025	0.000	0.825	1.341	0.035	2.181	0.340
6.000	N/A	194,273	0.000	1.140	2.321	N/A	N/A	N/A

Tamiami Trail Modified Water Deliveries to Everglades National Park Project

Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida

Alternative 2C

CONCRETE CANTILEVER RETAINING WALL

ESTRUCT\Design\Tamiami-Trail\design\cost-analysis\nlternative 2Cwerlandside\[Walls,xls]CantWall

Done by: F. ORNARLI

Checked by: S.YETIMOGLU November 7, 2000

RESULTS

Wall height:	:	5 <u>.0</u> feet					
Footing Reinforcement (Fa	ectored load design)						
Toe				Heel			
As Max.	2.165	in^2/ft		As Max.	2.614	in^2/ft	
As Min.	0.338	in^2/ft		As Min.	0.408	in^2/ft	
As Reqd.	0.000	in^2/ft		As Reqd.	0,046	in^2/ft	
	WITHOUT CRANE SUR	CHARGE		WITH CRA	ANE SURCHAR	GE	
Wall Reinf.(Factored load	design)			Wall Reinf.(Factored loa	ad design)		
As Max.	2.181	in^2/ft		As Max.	2.181	in^2/ft	
As Min.	0.340	in^2/ft		As Min.	0.340	in^2/ft	
As Reqd.	0.070	in^2/ft		As Reqd.	0.035	in^2/ft	
Bearing Capacity (Service	Load)			Bearing Capacity (Servi	ce Load)		
Net Length of Bearing (feet)			4.338	Net Length of Bearing (fe	et)		4,500
Net Bearing Stress at Toe (k	sf)		1.463	Net Bearing Stress at Toe	(ksf)		1.061
Net Bearing Stress at Heel (I	ksf)		0,000	Net Bearing Stress at Hee	l (ksf)		0,015
Factor of Safety				Factor of Safety			
Overturning	2.838	No.		Overturning	3.698		
Sliding	1.211			Sliding	1.444	100	
Sliding with key	1.829	_		Sliding with key	2.409		
Shear							
Bot, of Wall (w/o crane sure	tharge)	0,01	3				
Bot. of Wall (w/ crane surch	arge)	0.00	08				
Footing (at Toe)		0,00	00				
QUANTITIES & UNIT CO	OST						
	Quantity		Unit pri	ice Cost			
Concrete =	0	35 CY	415	147.30			82
Reinforcement =	26	62 lbs	0.45 TOTAL:	11.98 159.28 \$/LF			
75 lbs/c	cy is used		TOTAL,	139.40 MLF			

Corps of Engineers, Jacksonville, Florida

Done by: S. YETIMOGLU

Alternative 2D

INPUT

TEMPORARY SHEET PILE COST

Checked by: F. ORNARLI

I:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 2Deanalside\[Walls.xls]CantWall

November 7, 2000

Height of Temporary sheet pile	13.00 Ft	(PZ27)				
Soil anchor spacing	12.00 Ft					
Spacing of Tie back w/ deadman	12.00 Ft					
Deadman size						
Length	5.00 Ft					
Width	5.00 Ft					
Thickness	0.75 Ft					
Tie rod length	20.00 Ft					
Tie rod size	1.75 in (No. 14 rebar)					
Wale	50.00 lbs/Ft					
ITEM	QTY	<u>35</u>	TOTAL/Ft.			
* Temporary sheet pile	13.00 Ft	\$16	\$208.00			
Soil anchor	0.083 each/ft	\$1,200	\$100.00			
Deadman	0.06 CY/ft	\$310	\$17.94			
Tie rod	13 Lbs	\$0.45	\$5.74			
Wale	50 Lbs	\$0.80	\$40.00			
	TOTA	L COST/Ft.[\$331.68			

^{*} Unit price used is for permanent sheet pile since sheet piles cannot be removed due to tie rods burried under the new roadway.

Corps of Engineers, Jacksonville, Florida

Alternatives 2D

BULKHEAD (KINGPILE WITH TIE-BACK SYSTEM) DESIGN & COST

Checked by: S.YETIMOGLU

:\STRUCT\Design\Tamiami-Traif\design\cost-analysis\alternative 2Dcanalside\[Walls.xls]CantWall

November 7, 2000

INPUT		[
Height to Cap-top, H	15.50 Fc	
Height to Top of Backfill, h	15.00 Ft	
Location of anchor from top	2.50 Ft	
		н
Soil Properties:		
Soil Density, γ=	120 Lbs/Cu.Ft.	h Backfill \ ◀代。
Angle of Friction, Φ=	30 °	
Coef. Of Active Pressure, Ka=	0.33	
Cap Size:		3
Height	3.50 Ft	$\langle \mathbf{q}_{\mathbf{s}} \rangle = 7 \mathbf{q}_{\mathbf{s}} \mathbf{q}_{\mathbf{w}}$
Width	3.00 Ft	****
Pile Size:		7
Diameter	18.00 In.	
Penetration	10.00 Ft	
Length	24.50 Ft	
Spacing	10,00 Ft	

OUTTIME	DRESSIDE	EODCE	LOCATION E	DRCE ON ANCHOR	MAX MOMENT. IN PILE		Mom,Capacity of
OUTPUT Due to Soil	PRESSURE 6000.00 Psf.	EORCE 45.00 K		15.00 k	63.40 Ft-K		18" Sq. Pile(fc'=6 Ksi
Due to Hydrostatic TOTAL	9920.00 Psf.	76.88 K 121.88 K		26.48 k 41.48 k	111.92 Ft-K 175.32 Ft-K	<	and 12-0.5 In ² Strands(*) 190.00 Ft-K

^{*)} See attached document, (PCI Journal, Oct. 1968) for Moment Capacity of Prestressed Pile

ITEM	QTY	U.PRICE	TOTAL/Ft.
Bulkhead Cap	0.389 CY	\$415	\$161.39
Precast Panels	0.417 CY	\$310	S129.17
Reinforcement(*)	81 Lbs	\$0.45	\$36.25
18* Prestressed Pile/LF	2.45 Ft	\$33	\$80.85
** 40 ft, long anchor rod	31 Lbs	\$0.45	\$13.77
** Wale	50 Lbs	\$0.80	\$40.00
	TOT	AL COST/Ft.	\$461.43

^{**} Sheet pile for MOT will be utilized as Deadman. Therefore, the cost of deadman is not included.

Corps of Engineers, Jacksonville, Florida

Alternative 2D

BULKHEAD (KINGPILE WITH TIE-BACK SYSTEM)
DESIGN & COST

L\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 2Dcanalside\[Walls.xls]CantWall

1,R2%

Done by: F. ORNARLI

Checked by: S.YETIMOGLU

November 7, 2000

Panel Penetration	3.00 Ft
Panel Height	15.00 Ft
Panel Width	10.00 Ft
Panel Thickness	0.75 Ft
	2 - 14 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

Max. Soil Pressure 600.00 Psf. Max. Hydrostatic Pressure 992.00 Psf.

Total Pressure 1592.00 Psf. 3 Ft. above the bottom

Max. Pos. Moment 19.90 Ft-K

PC PANEL DESIGN

TO TAINED DESIGN		
Applied Factored Moment	Mu =	27.9 K-Ft/Ft.
Concrete Width	b =	12.0 in
Effective Depth	d =	6.70 in
Total Depth	h =	9.0 in
28-Day Conc. Comp. Stress	f'c =	3,4 ksi
Rebar Yield Stress	fy =	60,0 ksi
1.2 x Cracking Moment	1.2Mcr=	7.1 k-ft
	β1 =	0.85

 $As(min) = 0.24 in^2 (1.2Mcr)$ $As(4/3) = 1.43 in^2 (1/3 > required)$ $As (reqd) = 1.07 in^2$

 $As (reqd) = 1.07 in^2$ $<math>As(max) = 1.46 in^2$

Corps of Engineers, Jacksonville, Florida

Alternative 2D

CONCRETE CANTILEVER RETAINING WALL

:\STRUCT\Design\Tamiami-Traif\design\cost analysis\alternative 2Dearalside\fWalls.xls|CantWall

DESIGN DATA

Soil Parameters and Loading Information:		Wall and Footing Information:	
Moist Unit Weight of Soil (pcf)	105,00	Top of Wall Thickness (inch)	11,000
Saturated Unit Weight of Soil (pcf)	120.00	Back Slope of Wall (inch/foot)	0.000
Coefficient of Friction	0.40	Heel Length (feet)	3.582
Crane Load Surcharge (psf)	0.00	Footing Length (feet)	4,500
Angle of internal friction o (deg)	30.00	Footing Thickness (inch)	12,000
Wall Friction angle δ (deg)	17.00	Toe Length (feet)	0.001
Angle of back face of wall a (deg)	90.00		
Slope of back fill β (deg)	0.00	Wall Design Data:	
Ka	0.299	Dead Load - Load Factor	1.40
Equiv. Passive Fluid Pressure (pcf)	300 000	L.L. & Soil Pres Load Factor	1.70
Angle of Int. Friction for Key (deg.)	30.000	Concrete Strength (ksi)	4.00
		Reinforcing Steel (ksi)	60.00
Soil and Water Elevations (NGVD - feet):		Cover - Bottom of Footing (inch)	3.00
Top of Wall Elevation	13.500	Cover - Top of Footing (inch)	1,50
Top of Back Soil Elevation	13.500	Cover - Wall (inch)	2.00
Top of Front Soil Elevation	9,500		
Back Water Elevation	11,500	Additional Input	
Front Water Elevation	10,500	Distance from F.F. Key to Toe	1,000 ft.
Top of Footing Elevation	8.500	Depth of Key	6.0 in
		Rebar Size (wall)	#8
		Rebar Size (Footing - Toe)	#9
		Rebar Size (Footing - Heel)	# 5
	ADDITIONAL LO	ADS	
Dead Loads:		Live Loads:	
Moment (ft-kip/ft)	0,000	Moment (fl-kip/ft)	0,000
Shear (Kips/ft)	0.000	Shear (Kips/ft)	0.000
Vertical Load (kips/ft)	0.000	Vertical Load (kips/ft)	0.000
Wind Loads:		Live Load Surcharge(ksf)	0,210
Moment (ft-kip/ft)	0.000		Annual Control
en vert to	0.000	Charles Construent Land (Indian)	0.00

0.000

0.000

Crane Surcharge load (kips)

Over Stress Factor

Note:

Shear (Kips/ft)

Vertical Load (kips/ft)

- 1) Live loads, Wind loads and Liveload Surcharge are not considered while designing for Crane Surcharge Loads.
- 2) The allowable 25% overstress for Wind Loads is not considered in the design to be conservative.
- Downward loads, loads and moments causing overtruning are positive.

Corps of Engineers, Jacksonville, Florida

Alternative 2D

CONCRETE CANTILEVER RETAINING WALL

1:STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 2Dcanalside\fWalls,xls\CanzWall

PBS_j

Done by: F. ORNARLI Checked by: S.YETIMOGLU November 7, 2000

ateral	Earth	Pressures
--------	-------	-----------

		Back Face	Pressures		Front Face Pressures			Net Back Pressures	
Distance from Top of Wall	Active Pressure of Soil	Water Adjust.	Surcharge	Total Back Face Pressure	Active Pressure from Soil	Water Pressure	Total Front Face Pressure	Without Surcharge	With Surcharg
feet	psf	psť	psf	psf	psf	psf'	psf	psf	psť
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000
0.250	7,860	0,000	0.000	7,860	0.000	0.000	0.000	7,860	7 860
0.500	15.721	0.000	0.000	15.721	0.000	0.000	0,000	15.721	15.721
0,750	23.581	0.000	0.000	23.581	0,000	0.000	0.000	23.581	23,581
1,000	31,441	0.000	0.000	31,441	0.000	0.000	0.000	31,441	31 441
1.250	39.301	0.000	0,000	39.301	0.000	0,000	0.000	39 301	39,301
1.500	47.162	0.000	0.000	47,162	0.000	0.000	0.000	47,162	47 162
1.750	55,022	0.000	0.000	55,022	0.000	0.000	0,000	55.022	55,022
2,000	62,882	0.000	0,000	62.882	0.000	0.000	0.000	62 882	62.882
2.250	70.742	12.052	0.000	82.794	0.000	0.000	0.000	82.794	82.794
2.500	78 603	24.103	0.000	102.706	0.000	0.000	0.000	102,706	102,706
2.750	86,463	36.155	0.000	122,618	0.000	0.000	0,000	122,618	122,618
3 000	94.323	48 207	0.000	142,530	0.000	0.000	0,000	142.530	142.530
3,250	102.183	60.258	0.000	162.442	0.000	15,600	15.600	146.842	146,842
3.500	110.044	72,310	0.000	182,354	0.000	31.200	31.200	151.154	151 154
3.750	117,904	84.362	0.000	202.265	.0.000	46,800	46,800	155.465	155,465
4.000	125.764	96.413	0.000	222.177	0,000	62.400	62 400	159.777	159,777
4.250	133,624	108,465	0.000	242.089	0.000	78.000	78,000	164,089	164.089
4.500	141.485	120.517	0,000	262.001	0.000	93,600	93.600	168.401	168,401
4,750	149 345	132.568	0,000	281,913	0,000	109.200	109 200	172.713	172,713
5.000	157.205	144.620	0,000	301,825	0.000	124,800	124,800	177,025	177.025
6.000	188,646	192.826	0.000	381.473	0,000	187.200	187.200	194.273	194,273

WITHOUT CRANE SURCHARGE

Calculation of Driving Moment and Shear

Distance from Top of Wall	Net Back Pressure	Increment Shear	Total Shear	Increment Moment	Total Moment	
		kips	kips	ft-kips	ft-kips	
0.000			0.000	0.000	0.000	
0.250	70.742	0.017	0.017	0.002	0,002	
0.500	78 603	0.019	0.035	0.006	0.009	
0.750	86 463	0.021	0.056	0.011	0.020	
1.000	94,323	0.023	0.079	0.017	0.037	
1.250	102.183	0.025	0,103	0.023	0.059	
1.500	110.044	0.027	0.130	0.029	0.088	
1,750	117.904	0.028	0,158	0.036	0.124	
2.000	125.764	0.030	0,189	0.043	0.168	
2 250	145.676	0,034	0.223	0.051	0.219	
2.500	165,588	0.039	0.261	0.060	0.279	
2.750	185,500	0.044	0.305	0.071	0.350	
3,000	205.412	0,049	0.354	0.082	0.432	
3.250	209.724	0.052	0.406	0.095	0.528	
3.500	214 036	0.053	0,459	0.108	0.636	
3.750	218.348	0.054	0.513	0.122	0,757	
4.000	222.659	0.055	0.568	0.135	0.892	
4.250	226 971	0.056	0,624	0.149	1.041	
4.500 231,283		0,057	0.682	0.163	1,205	
4.750	235.595	0.058	0.740	0.178	1.382	
5 000	239.907	0,059	0.800	0.192	1.575	
6.000	257.155	0.249	1.048	0.922	2.497	

Driving Moment (ft-kips)
2.497 1.365
(w/ LL & WL) (w/o LL & WL)
Resisting Moment (ft-kips)
7.09 5.049
(w/ LL & (w/o LL & WL)
F.S. against Overturning
2.838

> Depth of Key 6,0 in.

Corps of Engineers, Jacksonville, Florida

CONCRETE CANTILEVER RETAINING WALL

Weight

kips

0.675

0.000

0.000

0.000

1.881

0.000

0.161

0.000

-0.842

-0.140

0.000

0.752

3.174

LASTRUCT\Design\Tamizmi-Traif\design\cost-analysis\alternative 2Dcanalside\|Walls.xls|CanxWall

PBSy Done by: F. ORNAJ

Done by: F. ORNARLI Checked by: S.YETIMOGLU November 7, 2000

Bearing against Key (F.S.=1.5) 0.605 ksf

Distance from F.F. Key to Toe 1,000 ft.

Depth of Passive Resistance 2.077 feet

> Passive Resistance 0,647 kips

S.F. against Sliding 1,829

WITH CRANE SURCHARGE

Mom. Arm

feet 2.250

0.459

0.918

0.001

2.709

0.918

2.709

0.918

2,250

3.000

0.459

2.709

Moment

ft-kips

1.519

0.316

0.000

0.000

0.000

5.095

0.000

0.000

-1.895

-0.421

0.000

2.038

7.087

Calculation of Driving Moment and Shear

Calculation of Resisting Moment and Shear

Alternative 2D

Element

Constant Thickness Wall Sloped Backface of Wall

Water over Soil over Toe

Water adjust above Base

Uniform Bouyancy

Total

Differential Bouyancy

Additional Vertical Load

Additional L.L. Surcharge

Water adjust above Wall Taper

Base of Foundation

Soil over Toe

Soil above Base Soil above Wall Taper

Distance from Top of Wall	Net Back Pressure	Increment Shear	Total Shear	Increment Moment	Total Momen
feet	psf	kips	kips	ft-kips	ft-kips
0,000 0,000		0,000	0.000	0.000	0.000
0.250	7.860	0,001	0.001	0.000	0,000
0.500	15.721	0.003	0.004	0.001	0.001
0.750	23.581	0,005	0,009	0,002	0.002
1,000	31.441	0.007	0.016	0.003	0.005
1.250	39,301	0.009	0.025	0.005	0.010
1,500	47.162	0.011	0.035	0.007	0.018
1,750	55.022	0.013	0,048	0,010	0.028
2.000	62.882	0.015	0,063	0.014	0.042
2.250	82.794	0.018	0.081	0.018	0,060
2,500	102.706	0.023	0.104	0.023	0.083
2.750	122.618	0.028	0,132	0.029	0.112
3.000	142,530	0,033	0.166	0.037	0.150
3.250	146 842	0.036	0.202	0.046	0.195
3.500	151.154	0.037	0.239	0.055	0.250
3.750	155,465	0,038	0.277	0.065	0.315
4,000	159,777	0.039	0.317	0,074	0.389
4.250	164,089	0,040	0.357	0.084	0.473
4.500	168,401	0.042	0.399	0.094	0.568
4.750	172,713	0.043	0.441	0,105	0.673
5,000	177 025	0.044	0.485	0.116	0.789
6.000	194,273	0.186	0.671	0,577	1,365

Driving Moment 1.365 fl-kips

Resisting Moment 5,049 ft-kips

F.S. against Overturning 3,698

> Driving Shear 0.671 kips .

Bouyant Dead Load Reaction 2.422 kips

> Frictional Resistance 0.969 kips

F.S. against Sliding 1.444

Depth of Key 6.0 in.

Corps of Engineers, Jacksonville, Florida

Dane by: F. ORNARLI Checked by: S.YETIMOGLU

November 7, 2000

Alternative 2D

I:\STRUCT\Design\Tamiami-Trail\clesign\cost-analysis\alternative 2Dcanalside\(\)[Walls.xls]CantWall

Calculation of Resisting Moment and Shear

Element	Weight	Mom, Arm	Moment
	kips	feet	ft-kips
Base of Foundation	0.675	2.250	1.519
Constant Thickness Wall	0.688	0,459	0.316
Sloped Backface of Wall	0.000	0.918	0.000
Water over Soil over Toe	0.000	0.001	0.000
Soil over Toe	0 000	0,001	0.000
Soil above Base	1.881	2,709	5.095
Soil above Wall Taper	0,000	0.918	0.000
Water adjust above Base	0.161	2.709	0.437
Water adjust above Wall Taper	0.000	0.918	0.000
Uniform Bouyancy	-0.842	2.250	-1.895
Differential Bouyancy	-0.140	3,000	-0,421
Additional Vertical Load	0.000	0.459	0.000
Surcharge	0,000	2.709	0.000
Total w/o Surcharge Vertical Load	2,422		5,049
Total w/ Surcharge Vertical Load	2,422		5.049

CONCRETE CANTILEVER RETAINING WALL

1	Bearing against Key (F.S.=1.5) 0.075 ksf
	Distance from F.F. Key to Toe 1.000 ft.
	Depth of Passive Resistance
	2,077 feet
	Passive Resistance
	0.647 kips
	S.F. against Stiding
	2,409

Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida

Alternative 2D

CONCRETE CANTILEVER RETAINING WALL

E/STRUCT/Design/Tamiami-Trail/design/cost-analysis/alternative 2Dcanalside/[Walls.xls]CantWall

Checked by: S.YETIMOGLU

November 7, 2000

Bea	aring Capacity Analy	vsis	
Service Load Design		Factored Load Design	
Bearing Capacity w/o Surcharge Vertical Load	11.000.00	- 1700 No. 170 October 170 Oct	
Average Bearing Stress (ksf)	0.705	Average Bearing Stress (ksf)	1.293
Section Modulus of Footing (ft^3)	3,375	Section Modulus of Footing (ft^3)	3.375
Eccentricity (feet)	0.804	Eccentricity (feet)	0.717
Bearing Stress Due to Moment (ksf)	0.756	Bearing Stress Due to Moment (ksf)	1.237
Net Length of Bearing (feet)	4 338	Length of Bearing (feet)	4.500
Net Bearing Stress at Toe (ksf)	1,463	Bearing Stress at Toe (ksf)	2.530
Net Bearing Stress at Heel (ksf)	0.000	Bearing Stress at Heel (ksf)	0.056
Bearing Capacity w/ Surcharge Vertical Load			
Average Bearing Stress (ksf)	0.538	Average Bearing Stress (ksf)	1.059
Section Modulus of Footing (ft^3)	3.375	Section Modulus of Footing (ft ³)	3.375
Eccentricity (feet)	0.729	Eccentricity (feet)	0.573
Bearing Stress Due to Moment (ksf)	0.523	Bearing Stress Due to Moment (ksf)	0.810
Net Length of Bearing (feet)	4.500	Length of Bearing (feet)	4,500
Net Bearing Stress at Toe (ksf)	1.061	Bearing Stress at Toe (ksf)	1.869
Net Bearing Stress at Heel (ksf)	0.015	Bearing Stress at Heel (ksf)	0.249
Four	ndation Design (Fact		
Toe Design Pressures (ksf):		Heel Design Pressures (kst):
Bearing Pressures w/o Surcharge Vertical Load		250.000 00 000 000 000 000 000 000 000	1010000
Downward Pressure Toe End	0.291	Downward Pressure Heel End	1.008
Downward Pressure Wall End	0.291	Downward Pressure Wall End	1.008
Upward Pressure Toe End	-2,530	Upward Pressure Heel End	-0.056
Upward Pressure Wall End	-2.529	Upward Pressure Wall End	-2.026
Bearing Pressures w/ Surcharge Vertical Load	200		200
Downward Pressure Toe End	0.291	Downward Pressure Heel End	1.008
Downward Pressure Wall End	0.291	Downward Pressure Wall End	1.008
Upward Pressure Toe End	-1.869	Upward Pressure Heel End	-0.249
Upward Pressure Wall End	-1.869	Upward Pressure Wall End	-1.539
Foundation Reinforcement:			
Main Toe Reinforcing	# 9	Main Heel Reinforcing	# 5
Effective Depth (inches)	8.438	Effective Depth (inches)	10,188
Shear in Toe (kips)	0.002	Shear in Heel (kips)	0.408
Shear Stress (ksi)	0.000	Shear Stress (ksi)	0.003
Moment in Toe (ft-kips) (Reduced)	0.000	Moment in Heel (ft-kips) (Redu.)	2 110
As-required [Bottom] (in^2/ft)	0.000	As-required [Top] (in^2/ft)	0.046
As-max (in^2/ft)	2.165	As-max (in^2/ft)	2.614
As-min (in^2/ft)	0.338	As-min (in^2/ft)	0.408

Corps of Engineers, Jacksonville, Florida

CONCRETE CANTILEVER RETAINING WALL

\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 2Dcunalside\fWalls.xls|CantWall

Done by: F. ORNARLI Checked by: S. YETIMOGLU November 7, 2000

WITHOUT CRANE SURCHARGE

Wall Reinforcing Requirements - Shear Check (Factored)

Alternative 2D

Distance from Top of Wall	Effective Depth of Rebar	Net D L. Back Pressure	Net L.L. Back Pressure	Increment Shear	Total Shear	Shear Stress	Status
feet	inches	psf'	psf	kips	kips	ksi	
0.000	8.500	0.000	62.882	0,000	0.000	0.000	O.K.
0.250	8,500	7.860	62,882	0.028	0.028	0.000	O.K.
0.500	8,500	15.721	62.882	0.032	0.060	0,001	O.K.
0.750	8.500	23.581	62.882	0.035	0,095	0.001	O.K.
1 000	8,500	31 441	62.882	0.038	0.134	0.001	O.K.
1.250	8.500	39.301	62,882	0.042	0.175	0.002	O.K.
1.500	8.500	47.162	62.882	0.045	0.220	0.002	O.K.
1 750	8.500	55 022	62.882	0.048	0.269	0.003	O.K.
2.000	8.500	62 882	62,882	0.052	0.321	0.003	O.K.
2,250	8.500	82,794	62.882	0.058	0.378	0.004	O.K
2.500	8.500	102 706	62.882	0.066	0.445	0.004	O.K
2.750	8,500	122.618	62,882	0,075	0.519	0.005	O.K
3,000	8,500	142,530	62,882	0.083	0.602	0,006	O K
3,250	8.500	146,842	62.882	0.088	0,690	0.007	O.K
3.500	8.500	151.154	62.882	0,090	0.780	0.008	O.K
3.750	8,500	155.465	62.882	0.092	0.872	0,009	O.K
4,000	8.500	159,777	62.882	0.094	0,966	0.009	O.K
4.250	8.500	164,089	62.882	0,096	1.062	0.010	O.K
4 500	8,500	168.401	62,882	0.097	1.159	0,011	O.K
4.750	8.500	172,713	62 882	0.099	1.258	0,012	O.K
5.000	8.500	177.025	62.882	0.101	1.359	0.013	O.K
6.000	N/A	194.273	62.882	0.423	1.782	N/A	N/A

WITH CRANE SURCHARGE

Wall Reinforcing Requirements - Shear Check (Factored)

Max. Rebar Size		ıı g		THOWADIC PAC	tored Shear Stress	0.108	Carl Carl
Distance from Top of Wall	Effective Depth of Rebar	Net D.L. Back Pressure	Net L.L. Back Pressure	Increment Shear	Total Shear	Shear Stress	Status
feet	inches	psf	psf	kips	kips	ksi	
0.000	8,500	0.000	0,000	0,000	0.000	0.000	O.K.
0,250	8.500	7 860	0,000	0.002	0.002	0.000	O.K.
0.500	8.500	15,721	0.000	0.005	0,007	0.000	O.K.
0.750	8,500	23.581	0.000	0,008	0.015	0.000	O.K.
1.000	8.500	31 441	0,000	0.012	0.027	0.000	O.K.
1.250	8.500	39.301	0.000	0.015	0.042	0,000	O.K.
1.500	8.500	47 162	0.000	0.018	0,060	0.001	O.K.
1.750	8 500	55.022	0,000	0.022	0.082	0.001	O.K.
2 000	8.500	62,882	0.000	0.025	0.107	0.001	O.K.
2.250	8.500	82.794	0.000	0.031	0.138	0.001	O.K.
2.500	8 500	102.706	0.000	0.039	0.177	0,002	O.K.
2.750	8,500-	122.618		0,048	0.225	0.002	O.K
3.000	8,500	142.530	0.000	0,056	0.281	0.003	O.K.
3,250	8.500	146.842	0.000	0.061	0.343	0.003	O.K.
3.500	8.500	151,154	0.000	0.063	0.406	0,004	O.K.
3.750	8,500	155,465	0.000	0.065	0,471	0,005	O.K.
4.000	8,500	159.777	0.000	0.067	0,538	0.005	O.K.
4.250	8.500	164.089	0,000	0.069	0.607	0.006	O.K.
4.500	8 500	168.401	0.000	0.071	0.678	0.007	O,K
4.750	8.500	172.713	0.000	0.072	0.750	0.007	O.K.
5.000	8 500	177.025	0.000	0.074	0.825	0.008	O.K
6.000	N/A	194.273	0.000	0,316	1.140	N/A	N/A

Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida

CONCRETE CANTILEVER RETAINING WALL

-\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 2Dcanalside\[Walls,xls]CamWall

Checked by: S.YETIMOGLU November 7, 2000

WITHOUT CRANE SURCHARGE

Wall Reinforcing Requirements - Moment Check (Factored)

Alternative 2D

Distance from Top of Wall	Effective Depth of Rebar	Net D.L. Back Pressure	Net L.L. Back Pressure	Total Shear	Total Moment	Area of Steel Required	As-max.	As-min,
feet	inches	psf	psf	kips	fl-kips	in^2/ft	in^2/ft	in^2/ft
0.000	8.500	0.000	62.882	0.000	0.000	0.000	2.181	0.340
0.250	8.500	7,860	,62,882	0.028	0.003	0.000	2,181	0,340
0.500	8,500	15.721	62.882	0.060	0.014	0.000	2.181	0.340
0,750	8,500	23.581	62.882	0,095	0.034	100.0	2.181	0.340
1,000	8.500	31.441	62,882	0.134	0.062	0.002	2.181	0.340
1.250	8.500	39,301	62.882	0.175	0,101	0.003	2.181	0.340
1.500	8,500	47.162	62.882	0.220	0.150	0.004	2.181	0.340
1,750	8.500	55.022	62.882	0.269	0.211	0.006	2.181	0.340
2,000	8.500	62,882	62 882	0.321	0.285	0.007	2,181	0.340
2 250	8,500	82.794	62 882	0.378	0.372	0.010	2.181	0.340
2,500	8.500	102.706	62.882	0.445	0.475	0.012	2.181	0,340
2.750	8.500	122.618	62,882	0.519	0.595	0.016	2,181	0.340
3.000	8.500	142,530	62.882	0.602	0.735	0.019	2.181	0.340
3.250	8,500	146.842	62.882	0.690	0.897	0.023	2.181	0.340
3,500	8,500	151.154	62.882	0,780	1.081	0.028	2.181	0.340
3.750	8,500	155.465	62,882	0.872	1.287	0.034	2.181	0.340
4.000	8.500	159.777	62.882	0.966	1.517	0.040	2.181	0.340
4.250	8,500	164.089	62.882	1,062	1.770	0.046	2.181	0,340
4,500	8.500	168.401	62,882	1.159	2.048	0.054	2.181	0.340
4.750	8.500	172.713	62.882	1.258	2.350	0.062	2.181	0.340
5.000	8,500	177.025	62.882	1.359	2,677	0.070	2.181	0.340
6.000	N/A	194,273	62.882	1.782	4.245	N/A	N/A	N/A

WITH CRANE SURCHARGE

Wall Reinforcing Requirements - Moment Check (Factored)

Distance from Top of Wall	Effective Depth of Rebar	Net D.L. Back Pressure	Net L.L. Back Pressure	Total Shear	Total Moment	Area of Steel Required (redu.)	As-max.	As-min
feet	inches	psf	psf	kips	ft-kips	in^2/ft	in^2/ft	in^2/ft
0.000	8.500	0,000	0,000	0.000	0.000	0.000	2,181	0.340
0 250	8.500	7,860	0.000	0.002	0.000	0,000	2.181	0.340
0.500	8,500	15 721	0.000	0,007	0.001	0.000	2.181	0.340
0.750	8.500	23.581	0.000	0.015	0.004	0.000	2.181	0.340
1.000	8.500	31,441	0.000	0.027	0,009	0.000	2.181	0.340
1.250	8.500	39.301	0.000	0,042	0.017	0.000	2.181	0,340
1.500	8.500	47,162	0,000	0.060	0.030	0.001	2.181	0.340
1.750	8.500	55,022	0.000	0.082	0,048	0,001	2.181	0.340
2,000	8.500	62.882	0.000	0,107	0.071	0.002	2.181	0.340
2.250	8.500	82,794	0,000	0.138	0.102	0.003	2,181	0.340
2 500	8:500	102:706	0.000=	0:177	0:141	0,004+	~~2.181	0.340
2.750	8.500	122.618	0,000	0.225	0,191	0.005	2 181	0.340
3.000	8 500	142.530	0.000	0.281	0.254	0.007	2,181	0,340
3.250	8.500	146.842	0.000	0.343	0.332	0.009	2.181	0.340
3,500	8,500	151.154	0.000	0,406	0.426	0.011	2.181	0.340
3,750	8,500	155 465	0.000	0,471	0.536	0.014	2.181	0.340
4.000	8.500	159.777	0.000	0.538	0'662	0.017	2.181	0.340
4.250	8.500	164,089	0.000	0.607	0.805	0.021	2.181	0.340
4.500	8,500	168.401	0,000	0,678	0,966	0.025	2.181	0.340
4.750	8.500	172.713	0.000	0.750	1.144	0.030	2.181	0,340
5.000	8,500	177,025	0.000	0.825	1.341	0.035	2,181	0.340
6.000	N/A	194.273	0.000	1.140	2.321	N/A	N/A	N/A

Corps of Engineers, Jacksonville, Florida

Alternative 2D

CONCRETE CANTILEVER RETAINING WALL

STRUCT-Design/Tamiami-Trail/design/cost-analysis/alternative 2Dcaralside/(Walls.xis/CantWall

PBS,

Done by: F, ORNARLI Checked by: S.YETIMOGLU

November 7, 2000

RESULTS

Wall height:	5	0 feet						
Footing Reinforcement (Factored load de	esign)							
Toe					Heel			
As Max.	2.165	in^2/ft			As Max.	2.614	in^2/ft	
As Min.	0.338	in^2/ft			As Min.	0.408	in^2/ft	
As Reqd.	0.000	in^2/ft			As Reqd.	0.046	in^2/ft	
WITHOU	F CRANE SURG	CHARGE			WITH CRANE S	URCHAR	GE	
Wall Reinf.(Factored load design)					Wall Reinf.(Factored load desi	ign)		
As Max.	2.181	in^2/ft			As Max.	2.181	in^2/ft	
As Min.	0,340	in^2/ft			As Min.	0.340	in^2/ft	
As Reqd.	0.070	in^2/ft			As Reqd.	0.035	in^2/ft	
Bearing Capacity (Service Load)					Bearing Capacity (Service Loa	ıd)		
Net Length of Bearing (feet)			4.338		Net Length of Bearing (feet)			4,500
Net Bearing Stress at Toe (ksf)			1.463		Net Bearing Stress at Toe (ksf)			1,061
Net Bearing Stress at Heel (ksf)			0.000		Net Bearing Stress at Heel (ksf)			0.015
Factor of Safety					Factor of Safety			
Overturning	2.838				Overturning	3.698		
Sliding	1.211				Sliding	1.444		
Sliding with key	1.829				Sliding with key	2,409		
Shear								
Bot. of Wall (w/o crane surcharge)		0.0	13		_			
Bot, of Wall (w/ crane surcharge)		0.00	08		_			
Footing (at Toe)		0,0	00		<u>-</u>			
QUANTITIES & UNIT COST								
	Quantity			Unit price	Cost			(+
Concrete =	0	35 CY		415	147.30			
Reinforcement =	26.	62 lbs		0.45	11.98			
75 lbs/ey is used				TOTAL:	159.28 \$/LF			
75 lossey is used								

Appendix D-5

Alternative 3

Tamiami Trai Pr	B +75 c
PRCI	í~ I

r Deliveries to Everglades National Park Project	incering appendix for GNN SELS	AND SPAN LENGTHS Checked CL Date 1129/00
Tamiami Trail Modified Water Deliveries to Everglades National Park Project	reparation of Engineering Appendix For Gravities Corps of Engineers, Jacksonville, Florida	BRIDGE AND SPAN LENGTHS

TISTRUCT/Design/Tamianni-Trail/design/cost-analysis/alternative-3/(Type C Bridge 1 and 8 xls)COST Alternative 3 (Bridges 1 & 8)

Bridge Length Minimum Span length Increaments of number of spans

1214 Ft. 75 Ft. 1 ت

9 12 12 12 12 12 13 14 12 12 12 12 12 12 12 12 12 12 12 12 12	1214 1214 1214 1214 1214	24 PILE	36 DRILLED SHAFT	18 PILE	24 PII F	TOVING WELLIAM AND
0 0 1 2 5 4	1214 1214 1214 1214					36 URILLED SHAFT
e 0 1 2 5 4	1214 1214 1214 1214		hira			
0 1 2 2 2 4	1214 1214 1214	1214	1214	134.9	134.9	134.9
E 2 E 4	1214 1214 1214	1214	1214	121.4	121.4	121.4
13 4	1214	1214	1214	110.4	110.4	110.4
13	1214	1214	1214	101.2	101.2	101.2
4		1214	1214	93.4	93.4	93.4
	1214	1214	1214	86.7	88.7	86.7
15	1214	1214	1214	6.08	80.9	80.9
16	1214	1214	1214	75.9	75.9	75.9
			or affire her one for more than			

DRC	Tamiami Trail Modified Water Del
	Corps of Engine
•	BEAM SPACIN

ering Appendix For GRR/SEIS ers, Jacksonville, Florida

IG VS DESIGN SPAN

11/29/00 11/29/00

Date: Date:

8 Ü

Design: Checked:

öţ

Sheet

liveries to Everglades National Park Project

ISSTRUCT Design/Tamiami-Trail/design/cost-analysis/alternative-3/[Type C Bridge 1 and 8.xls]COST

Alternative 3 (Bridges 1 & 8)

BRIDGE WIDTH:

43.083 Ft.

SLAB THICK:

8.5 In. FBT78 118.0 128.0 145.0 138.0 152.0 ** DESIGN SPAN (AASHTO BEAMS) FBT72 114.0 124.0 132.0 137.0 143.0 TYPE VI 126.0 135.0 141.0 146.0 150.0 TYPE V 108.5 115.5 125.0 128.0 SPACING * BEAM 7.18 6.15 10.77 8.62 5.39 NUMBER OF BEAMS

4 S 9 ω

* Based on Cantilever being half of the beam spacing.

** Design spans are determined from the charts based on the beam spacing given.

Tamiami Trail Modified Water Deliveries to Everglades National Park Project	Sheet	Jo
Preparation of Engineering Appendix For GRR / SEIS Corp of Engineers, Jacksonville, Florida		
AASHTO BEAMS COMPARISON	Design: FO Checked: CL	Design: FO Date: 07/11/00 Thecked: CL Date 11/29/00

NUMBER	ADJUST	ADJUSTED SPAN LENGTH (FT.)	NUMBER ADJUSTED SPAN LENGTH (FT.)	STATE STATE OF	THE REAL PROPERTY OF				NUMBER OF AASHTO BEAMS	EAMS		STANSON STANSON	1	- Spiller	Sec. Sec.
OF	d	Pil ES	DRILLED	No. of Contract of	18	18" PILES		THE PERSON NAMED IN	24	24" PILES			DRILLED SHAFT	SHAFT	
SPANS	18 IN	24 IN.	SHAFT	Λ	M	FBT72	FBT78	۸	N	FBT72	FBT78	^	N	FBT72 FBT78	FBT78
o	134.9	134.9	134.9		co.	7	9		5	7	9		9	7	9
10	121.4	121.4	121.4	7	*	5	2	7	4	5	S	7	4	9	S
11	110.4	110.4	110.4	so.	4	4	7	2	+	4	4	2	4	4	4
12	101.2	101.2	101.2	4	4	4	*	4	4	4	য	4	4	4	*
13	93.4	93.4	93.4	4	4	4	4	4	**	4	4	4	4	4	4
14	86.7	88.7	7.98	4	ব	4	4	4	+	4	4	4	4	4	4
15	80.9	80.9	608	4	4	4	4	*	+	4	4	4	4	4	4
16	75.9	75.9	692	4	+	4	4	4	4	4	4	4	4	4	4
			10												

90	ACCOUNT SECURITION OF		一年 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	THE PERSON NAMED IN	COLUMN I ED CO	ESTIMATED CONSTRUCTION COST OF ASSISTED BEARING	DEAN TO ISO	O DEAMS	Company of the Compan	STATE OF STATE OF STREET, STATE OF STAT	The state of the s	
	STEEL STEEL	18" PILE	ES	S. STATESTANDER	11日の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の	24" PILES	ES	ははなる	Company of the second	DRILLED SHAFT	-TAFT	The state of the s
SPANS	۸	N	FBT72	FBT78	۸	N	FBT72	FB178	^	N	FBT72	FBT78
G.	NA	\$667,700	\$924.30B	801240	N/A	\$667,700	\$824,306	801240	N/A	\$667,700	\$824,306	801240
10	\$781.816	\$534,160	\$588,79D	667700	\$781,816	\$534,160	\$588,790	007788	\$781,816	\$534,160	\$588,790	687700
11	\$558.440	\$534,160	\$471,032	534180	\$558,440	\$534,160	\$471,032	534160	\$558,440	\$534,180	\$471,032	534160
12	\$446,752	\$534,160	\$471,032	534160	\$446,752	\$534,160	\$471,032	534160	\$446,752	\$534,160	\$471,032	534160
13	\$446.752	\$534,160	\$471,032	534160	\$446,752	\$534,160	\$471,032	534160	\$446,752	\$534,160	\$471,032	534160
14	\$445.752	\$534,160	\$471,032	534160	\$448,752	\$534,160	\$471,032	534160	\$446,752	\$534,160	\$471,032	534160
15	\$446 752	\$534,160	\$471.032	534160	\$445,752	\$534,160	\$471,032	534160	\$446,752	\$534,180	\$471,032	534160
16	\$446.752	\$534,160	\$471.032	534160	\$446,752	\$534,160	\$471,032	534160	\$448,752	\$534,160	\$471,032	534160
			en y									
			101									
			-									
			41.7									
Beam Unit Price:	\$92.00	\$110.00	\$97.00	110.00	\$92.00	\$110.00	\$97.00	110.00	\$92.00	\$110.00	\$97.00	110.00

NUMBER	STATE STATE	できる 日本の 日本の 日本の 日本の 日本の 日本の 日本の 日本の 日本の 日本の	MOST EC	MOST ECONOMICAL AASHTO BEAM TYPE	M TYPE	
QF.	18"	18" PILES	TOTAL PROPERTY.	24" PILES	DRII	DRILLED SHAFT
SPANS	TYPE	cost	TYPE	COST	TYPE	COST
6	>	\$667,700	N N	\$667,700	- N	\$667,700
10	I	\$534,160	N	\$534,160	N	\$534,160
11	FBT72	\$471,032	FBT72	\$471,032	FBT72	\$471,032
12	>	\$446,752	^	\$446,752	>	\$446,752
13	>	\$446,752	>	\$446,752	>	\$446,752
14	>	\$446,752	>	\$446,752	>	\$446,752
15	^	\$446,752	>	\$448,752	Λ.	\$446,752
16	>	\$448,752	>	\$446,752	۸	\$448,752

I	-
ı	741
l	A)
ı	22
I	
ı	

Corps of Engineers, Jacksonville, Florida
SUPERSTRUCTURE ALTERNATIVES COMPARISION Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS

11/29/00

Date

2 2

Design

mative-PVType C Bittige 1 and 8 shippost

Alternative 3 (Bridges 1 & 8)

	ADJUSTED SPAN LENGTH (LENGTH (FT.)			COSTOF	COST OF BEAMS & DECK SLAB	K SLAB			BEAM NUMBERS	ERS
FOR 18"	FOR 24"	TOVERS OF HER SUAST	FOR	FOR 18" PILES	P. P.	FOR 24" PILES	FOR	FOR DRILLED SHAFT	18 IN. PHES	24 IN. PILES	DRILLED SHAFT
PILES	PILES	TON DIVILLED SHEET	TYPE	COST	TYPE	COST	TYPE	COST			
134.9	1349	1349	5	\$1,219,643	5	\$1,219,643	5	\$1,219,643	9	9	9
1214	121.4	1214	5	\$1,086,103	5	\$1,086,103	5	\$1,086,103	4	4	4
110.4	1104	1104	FBT72	\$1,022,975	FBT72	\$1,022,975	FBT72	\$1,022,975	4	4	4
101.2	1012	1012	>	\$998,695	>	\$998,695	^	\$999,695	4	4	4
83.4	534	468	>	\$998,698	>	\$998,695	>	\$998,695	+	4	4
98.7	86.7	88.7	>	\$999,695	>	\$998,695	>	\$999,695	4	4	4
808	608	608	>	\$998,696	>	\$69'856\$	>	\$998,695	4	4	4
75.9	759	759	>	\$998,695	>	\$998,695	^	\$998,695	4	Ą	4
		1									(1)
		0.									
		4									

Deck Reinforcement Cost of Deck/Fest

205 Lbs/CY of Congrete \$455

TAA
V
88

2 1 Sheet Design: Checked: FOUNDATION LOADS AND NUMBER OF 18 IN. PRESTRESSED PILES Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SELS Corps of Engineers, Jacksonville, Florida

11/29/00

Date. Date:

Trainfestgateest analysis'abstractive-N(Type C Bridge 1 and 8 xls)COST

Alternative 3 (Bridges 1 & 8)

1 STRUCT/DesignTam

Bridge Width (ft)	43	43.083							
Number of lanes		10							
Beam Type		M	M	FBT72	^	>	>	>	>
Beam Weight (k/ft)	-	1.130	1.130	0.800	1.055	1,055	1 055	1.055	1.055
Number of Spans		01	10	11	2	13	н	15	91
Number of Beams		V)	+	4	4	v	+	4	4
Span Length (ft)	1	134.9	121.4	110.4	101.2	93.4	86.7	80.9	75.9
Beam Span (ft)	н	132.9	119.4	108.4	99.2	91.4	84.7	78.9	73.9
Bridge Deck Thickness (in)	oc	8.500	8.500	8.500	8,500	8.500	8.500	8 500	8 500
Comp. Loads (ksf)	0	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
Barrier Loads (k/ft)(both sides)	0	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836
Dead Load									
Beam Load (kips) (END BENT)	50	800.1	651.5	519.5	527.8	487.2	452.4	422.2	395.8
Beam Load (kips) (PIER)	16	1600.3	1303.1	1038.9	1055.5	974.3	904.7	844.4	2016
Live Load									
Reduction factor		6.0							
Impact factor for Substructure		0.1							
LL Reaction per lane (END BENT)	,		***	0		65.7	2007	00 00	11 23
I ruck load (kips)	0	707/0	9.48	16.00	00.00	00.00	07:00	27.00	40.75
Lane load (klps)	Đ	69.16	57.83	61 32	58.37	25.88	55,73	21.90	20.28
Total Live Load (kips) (END BENT)		186.7	179.5	178.0	176.5	175.0	173.5	172.0	170.5
LL Reaction per lane (PIER)	4	67 KK	67.30	8	66.46	94 00	65 54	65.08	64.62
(squa) page (squa)		113 33	103 70	8	20 73	85 77	81.50	77.80	74.56
Total Live Load (kips) (PIER)	en.	303.3	280.0	260.9	245.0	231.6	220.0	210.1	2013
Total Load									
Superstructure Load (kips) (END BENT)	1	1080.6	924.7	791.1	797.9	785.8	719.6	687.9	660.0
Superstructure Load (kips) (PIER)	16	1961.7	1641.2	1358.0	1358.7	1264.1	1182.9	1112.6	1051.1
Foundation									
Maximum alle sonelne (fr)		13.0							
Service Load Capacity of Piles (kins)		147.0							
** Number of Piles Read For END BENT		8.0	7.0	6.0	6,0	0.9	5.0	5.0	5.0
** Number of Piles Read For PIER	950 N	N/A	N/A	N/A	N/A	0.0	9.0	8.0	8.0
Service Design Load (kins)(END BENT)		135	132	132	133	126	7	138	132
Service Design Load (kips)(PIER)		N.A	N/A	N/A	N/A	140	131	139	131

^{**} NOTE: N'A indicates that required number of piles exceeds the max. number of piles based on minimum pile spacing (3 * pile size)

	-	1	
ī	À	4	7
•	ø,	J	
	٧	4	
e			

3 5 Design: Checked: FOUNDATION LOADS AND NUMBER OF 24 IN. PRESTRESSED PILES Tamiami Trail Modified Water Deliverles to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida

11/29/00

Date: Date.

Sheet

1.STRUCT-Design Lamiani-Triff design lesst-sendy riskalternatio e-3 (Type C Beidge 1 and ExhlyCOST

Alternative 3 (Bridges 1 & 8)

Bridge Width (ft)		43 083								
Number of lanes		60								
Beam Type		M	M	FB172	>	^	>	>	>	
Beam Welght (k/ft)		1.130	1.130	0.800	1,055	1.055	1.055	1.055	1.055	
Number of Spans		o.	10	=	12	13	14	15	16	
Number of Beams		٧,	4	4	P	#	4	4	4	
Span Length (R)		1349	121.4	110.4	101.2	93.4	86.7	6 08	75.9	
		132.9	119.4	108.4	2.66	4 16	L 78	78.9	13.9	
Bridge Deck Thickness (in)		8.500	8 500	8,500	8 500	8.500	8.500	8.500	8.500	
Comp. Loads (ksf)		0.020	0,020	0.020	0.020	0.020	0.000	0.020	0.020	
Barrier Loads (Mft)(both sides)		0.836	0.836	0.856	0.836	0,836	0.836	0.836	0.836	
Dead Load										
Beam Load (kips) (END RENT)		800.1	651.5	519.5	\$27.8	487.2	452,4	422.2	395.8	
Beam Load (kips) (PIER)		1600.3	1303.1	1038.9	1055.5	9743	504.7	844.4	7916	
Live Load										
Reduction factor		6.0								
Impact factor for Substructure		1.0								
I.I. Reaction per lane (END BENT)			2000			0.000			į	
Truck load (klps)		67.02	97.99	16.59	65.36	64.80	25	63.70	63.14	
Lane load (kips)		91.69	64.85	61.32	58.37	25.88	53.75	51.90	50.28	
Total Live Load (kips) (END BENT)		186.7	179.5	0.871	176.5	175.0	173.5	172.0	170.5	
I.I. Reaction per lane (PIER)					11.11	11.00	12.27	80 29	1777	
Truck load (kips)		67.85	102.70	2 3	2 8 8	00.00	40,00	27.80	74.62	
Total Live Load (kips) (PLER)		303.3	280.0	260.9	245.0	2316	220.0	210.1	201.3	
Total Load Support Load Chies (END RENT)		1080 6	924.7	791.1	6,191	755.8	719.6	687.9	660.0	
Superstructure Load (kips) (PIER)		1961.7	1641.3	1358,0	1358,7	1264.1	1182.9	1112.6	1051,1	
Foundation										
Maximum pile spacing (ft)	19	130								
Service Load Capacity of Piles (kips)		260.0								
** Number of Piles Reqd For END BENT		5.0	4.0	4.0	4.0	4.0	4.0	0.4	4.0	
** Number of Piles Read For PIER		N/A	7.0	0.0	6.0	9.0	5.0	5.0	5.0	
Service Design Load (kips)(END BENT)		216	231	198	199	189	180	172	165	
Service Design Load (kips)(PIER)		N/A	234	226	226	253	237	223	210	

^{**} NOTE: NA indicates that required number of piles exceeds the max, number of piles based on minimum pile spacing (3 * pile size).

1	
CH,	
**	

Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida FOUNDATION LOADS ON DRILLED SHAFT

11/29/00

Date: Date:

3 5

Design: Checked:

Sheet

1.STR(CTDesignTaminan-traffdesignTootransbysis/alternative-3 (Pype CBodge Land 8.xb)005T Alternative 3 (Bridges 1.8.8)

Bridge Width (R)	43.083								
Number of lanes	en								
Beam Type	N	1	FBT72	>	^	۸	^	>	
Beam Weight (L/ft)	1.130	1.130	0.800	1.055	1.055	1.055	1.055	1.055	
Number of Spans	0.	10	=	1.2	13	14	15	91	
Number of Beams	V ₁	+	4	4		4	4	7	114
Span Length (ft)	134.9	121.4	110.4	101.2	93.4	86.7	80.9	75.9	
Beam Span (ft)	132.9	1.9.4	108.4	99.2	914	84.7	78.0	9.57	in te
Bridge Deck Thickness (in)	8 500	8.500	8.500	8 500	8.500	8.500	8.500	8 500	
Comp. Leads (ksf)	0.020	0.020	0.020	0.020	0.020	0.020	0.000	0.020	
Barrier Loads (L/R)(both sides)	0.836	0,836	0.836	0.836	0.836	0,836	0.836	0.836	
Dead Load									
Beam Load (kips) (END BENT)	1.008	651.5	519.5	527.8	487.2	452.4	422.2	395.8	
Beam Load (kips) (PIER)	1600.3	1303.1	1038.9	1055.5	974.3	904.7	844.4	791.6	
Live Load									
Reduction factor	60								
Impact factor for Substructure	0.1								
LL Reaction per lane (END BENT)									
Truck load (kips)	67.02	66.46	16 59	65.36	64.80	64.25	63.70	63.14	
Lane load (klps)	69.16	64.85	61.32	58.37	55.88	53,75	51.90	50.28	
Total Live Load (kips) (END BENT)	186,7	179.5	178.0	176.5	175.0	173.5	172.0	170.5	
LL Reaction per lane (PIER)		25000		0.0000			***	*****	
Truck load (kips)	67.85	61.39	66.93	00 40	999	65.54	80 60	20.00	
Lane load (kips)	112.55	103.70	20.05	50.00	11.00	00.18	00.77	000	
Total Live Load (kips) (PIER)	303.3	280.0	260.9	245.0	231.6	220.0	210.1	201.3	2000
Total Load									
* Superstructure Load (kips) (END BENT)	1109.7	955.8	820.2	827.0	784.9	748.0	0.717	039.1	
* Superstructure Load (kips) (PIER)	1,1861	1660.6	1377.4	1378.1	1283.5	1202.3	1132.0	1070.5	
Foundation									
Maximum pile spacing (ft)	0.91								40
Cantilever dist, from shaft to coping (ft)	0.9								
Number of Piles Required For END BENT	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Number of Piles Required For PIER	2	F4		*	7	rı	"	61	
Service Design Load (kips)(END BENT)	370	318	273	276	262	250	239	230	
Service Design Load (kips) (PIER)	166	830	689	689	6-12	601	566	535	
described and a second property of the second	1000								

	-	- 1	_
C	4	H	7
3		_	,
Н	1	-	
r	5		
В		_	•

5 Sheet Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida

INTERMEDIATE BENTS / PIERS

ysistahemamye-3(Type C Bridge 1 and 8 ids)COST

Alternative 3 (Bridges 1 & 8)

d Design: Checked

11/29/00

늉

11/29/00

Dale. Date

DRILLED SHAFT

DRILLED SHAFT

PILES -

DRILLED SHAFT

24 IN. PILES

18 IN. PILES

W/ SINGLE DRILLED SHAFT PIER SECTION

INTERMEDIATE BENT SECTION

\$6,380

\$1,242

00 00

8 27

19 8 27 \$891

43.083 19.15

43.083 14.36 \$6,897

43.083 2082

o

O

Estimated Cost of One Pile/Drilled Shaft

BentCap X-section (SqFt. Bent Length(Ft.

Pile Length Above Ground(Ft. Total Length of Pile (Ft.

Estimated Pile Embedment Length(Ft.

12

2778

2082

DRILLED SHAFT

24 IN. PILES

18 IN. PILES

TOTAL COST OF DRILLED SHAFT PER PIER

TOTAL COST OF PILES PER BENT 18 IN. PILES 24 IN. PILES

NUMBER OF DRILLED SHAFT

18 IN. PILES 24 IN. PILES

ž

00

A A A A

= 2 E 4 E

9

PIER

NUMBER OF PILES

NUMBER OF SPANS 9

Drilled shaft sidewall overreaming Excavation, unclassified extra depth

100

유

% of pile hole preformed

% of pile splice

% of casing splice Excavation, unclassified shaft ength of temporary casing Core(Shaft Excavation)

\$47,040.00

\$47,040.00

Estimated total cost of test piles w/ dynamic load test per bridge

dynamic load tests per bridge

\$19,010 \$18,316

\$26,956 \$26,122

\$19,927

A A A

\$25,802 \$25,527

\$17,552

\$16,331

\$10,913

\$13,838 \$12,176

\$17,810

\$20,735 \$20,433 \$19,073

\$17,760 \$17,305 \$16,927 \$16,606

\$13,458 \$11,215

\$15,440

A N N N

\$27,511

\$22,337

ESTIMATED COST OF ONE BENT/PIER

0

보용보

Æ

No of test load for drilled shaft per bridge

DRILLED SHAFT

24 IN. PILES

18 IN. PILES

PRESTRESSED PILES No. of test piles with

ESTIMATED COST OF BENT CAP

Total Concrete Volume (CY. Reinforcement(Lbs) 145 Lbs/CY

0

PIER SECTION

/ DOUBLE DRILLED SHAFT

ı		
-	-	_
17	-	
13		
10	-	•

11/29/00 Date: Date: of 27 Sheet Design: Checked: Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida END BENTS

cost-analysis/alternative-3/Type C Bridge 1 and 8.xls)COST LISTRUCTIONSIGN Tamismi-Trail/design/cost-am Alternative 3 (Bridges 1 & 8)

0 0			ener e			ENDBENT SECTION	# Jan			
				PILES OR	DRILLED SHAFT					
DRILLED SHAFT		21	8	29	\$6,380	12	43.083	19.15	2776	\$9,196
24 IN. PILES		19	8	27	\$1,242	7.5	43.083	11.97	1735	\$5,747
18 IN. PILES		19	8	27	\$891	7.5	43.083	11.97	1735	\$5,747
	Pile Dia.(Inches)	Estimated Pile Embedment Length(Ft.)	Pile Length Above Ground(Ft.)	Total Length of Pile (Ft.)	Estimated Cost of One Pile/Drilled Shaft	End BentCap X-section (SqFt.)	End Bent Length(Ft.)	Total Concrete Volume(CY.)	Reinforcement(Lbs) *	ESTIMATED COST OF BENT CAP

	*	14	145 Lbs/CY		
	PRESTRE	PRESTRESSED PILES	DRILLED SHAFTS		
	18 IN. PILES	24 IN. PILES	Core(Shaft Excavation)	- LF	0
			Length of temporary casing	- LF	0
			%'age of casing splice	%	0
			Excavation, unclassified shaft	[4]	
% of pile splice	10	10	Drilled shaft sidewall overreaming	- LF	0
% Pile hole preformed	100	100	Excavation, unclassified extra depth	I.F.	

NUMBER OF		* NUMBER OF PILES	·· NUMBER OF	TOTAL COST OF	TOTAL COST OF PILES PER ENDBENT	DRILLED SHAFT	ESTIMAT	ESTIMATED COST OF ONE ENDBENT	NDBENT
SPANS	18 IN PILES	24 IN. PILES	DRILLED SHAFT	18 IN. PILES	24 IN. PILES	ENDBENT	18 IN. PILES	24 IN. PILES	DRILLED SHAFT
đ	10	40	2	\$11,020	\$7,295	\$31,900	\$33,593	\$29,868	\$57,921
10	o	4	9	\$9.918	\$5,836	\$31,900	\$32,491	\$28,409	\$57,921
=	000	4	2	\$8.816	\$5,836	\$31,900	\$31,389	\$28,409	\$57,921
12	000	4	9	\$8.816	\$5,836	\$31,900	\$28,791	\$25,811	\$55,324
12	0 00	4	45	\$8.816	\$5,836	\$31,900	\$28,791	\$25,811	\$55,324
14	2	4	147	\$7.714	\$5,836	\$31,900	\$27,689	\$25,811	\$55,324
15	7	4	40	\$7.714	\$5,836	\$31,900	\$27,689	\$25,811	\$55,324
16	7	4	5	\$7,714	\$5,836	\$31,900	\$27,689	\$25,811	\$55,324

* Includes 2 wingwall piles for all beam types

** Includes 2 wingwall drilled shafts for all beam types

SUBSTRUCTURE & SUPERSTRUCTURE ALTERNATIVES COMPARISION Tamiami Tvall Modified Water Deliveries to Everglades National Park Project Preparadon of Engineering Appendix For GRENEIS

20

Alternative 3 (Bridges 1 & 8)

1349 1349	SPAN	AB IN DII CO	ADJUSTED SPAN LENGTH (FT.	TH(FT.)	NO. OF		COST OF SUBSTRUCTURE	TURE	00	COST OF SUPER STRUCTURE	CTURE	101	741 0000 000	-
1214 1214 1214 1214 9 NAA 5341,430 \$1,219,643 \$1,219,643 NAA NAA 1014 11014 1014 1014 1014 1014 1014 1	NUMBER	is in Files	44 IN. PILES	DRILLED SHAFT	PIERS	18 IN. PILES	24 IN PILES	DRILLED SHAFT	18 IN. PILES	24 IN. PILES	DRILLED SHAFT	18 IN. PILES	24 IN. PILES	DRILLED SHAFT
10.14 12.14 12.14 12.14 9 N/A \$250.647 55.65.05 51.055.05 51.055.05 N/A N/A \$1.055.05 151.055.05 51.055.05 N/A \$1.055.05 151.055.05 N/A \$1.055.05 151.055.05 N/A \$1.055.05	n	134.9	134.9	1349		MA	Au/A	5244 450	41 910 010					A
110.4 110.4 110.4 110.4 10 N.A 8270.827 8102.075 81.026.103 81.026	10	121.4	1214	1214	0	ALD A.		200-100	21,419,043	\$1,219,643	51,219,643	N.A.	N.A.	\$1.581.133
1012 1012 1012 1012 11 NA 8210 82 10 10 1 10 10 10 10 10 10 10 10 10 10 1	=	1104	1104	110.5	40	Car	160 1076	9000 440	\$1,086,103	\$1,086,103	\$1,086,103	N.A.	\$1,343,950	51 443 543
93.4 93.4 93.4 12 8306.401 84.417 8208.865 8998.865 8998.865 8998.865 8998.865 87.0 87.0 87.0 87.0 87.0 87.0 87.0 87.0	12	101.2	1012	1012		417	1970030	5365,401	\$1,022,975	\$1,022,975	\$1,022,975	NA	\$1,283,342	\$1 408 977
86.7 86.7 86.7 13 83.00.040 84.4.17 \$1918.055 \$10.05.049 \$1.207.0560 \$1.207.05	13	93.4	93.4	200	13	0000 ADA	270.0726	\$402,161	\$998,865	\$908,695	\$998,695	N/A	\$1269.517	\$1 400 857
80.9 80.9 80.9 14 \$322.015 346.05 \$50	4	86.7	867	2 200	11	640100	006,000	\$424,117	\$998,695	\$998,698	\$998,695	\$1,305,098	\$1267,660	\$1 422.813
75.9 75.9 15 \$338.111 \$311.540 \$489.065 \$908.095 \$1398.097 \$1.310.235	15	608	80.9	608	14	\$107.000	6007 446	5445.073	\$998,695	\$998.695	\$998,695	\$1,319,707	\$1,281,852	\$1,444,768
\$998 695 \$998 695 \$1308 607 \$1300 596 596 695 \$998 695 \$1308 607 \$1300 596 695	1.8	75.9	75.9	15.8	15	6338 444	0107.270	\$400,029	9889.089	\$998,695	\$998,695	\$1,321,094	\$1296.044	\$1.468.724
						T T TOTAL	00071100	3403,700	\$550,055	\$998,695	\$998,695	\$1,338,807	\$1,310,236	\$1,488,680
				101										
												7		
				-										

SUMMARY OF MOST ECCNOMICAL ALTERNATIVES FOR EACH SPAN ARRANGEMENT:

+	FOUNDATION SUPERSTR. ALTERNATIVE ALTERNATIVE	CORRESPONDING NUMBER OF SPANS	NUMBER OF BEAMS	NUMBER OF PILES OR DRILLED SHAFT	OF PILES OR DRILLED SHAFT (FT.)	NUMBER OF TEST PILES	TOTAL LENGTH OF TEST PILES (FT.)
-	N .	00	0	28	77.5	•	
\$1,449.549 DRILLED SHAFT	N N	- 01	7	28	270	>	0
\$1,408,377 DRILLED SHAFT	T FB772		1	200	910	0	0
\$1,400,857 DRULLED SHAFT		12	-	3 50	0/0	0	0
-	>			2	976	0	0
444 768 DRILLED SHAET		2		*	980	0	0
t		7	*	8	1044	0	0
+	>	15	+	38	1102	0	0
PLASSES DRILLED SHAFT	>	18	,	40	1180		
						3	
							2
		. 0.4					

RESULT OF COST COMPARISON STUDY:

MOST ECONOMICAL SUPERSTRUCTURE TYPE:
MOST ECONOMICAL SUBSTRUCTURE TYPE:
OPTIMUM SPAN ARRANGEMENT
TOTAL BRIDGE LENGTH:
TOTAL NUMBER OF BEAMS:
TOTAL BEAM LENGTH:
NUMBER OF PILES OR DRILLED SHAFT
LENGTH OF PILES OR DRILLED SHAFT:

NOTE: DRILLED SHAFT. ALTERNATIVE IS CHOSEN TO MINIMZE THE OBSTRUCTION IN CANAL.

101.17 FT.

SPANS AT

12 1214 FT. 48 4868 FT. 32 928 FT.

V DRILLED SHAFT

PBS?

Tamiami Trail Modified Water Deliveries to Everglades National Park Project

Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida

ESTIMATE OF PROBABLE CONSTRUCTION COSTS

Design: FO

Date: 11/29/00

Checked: CL Date: 11/29/00

DSTRUCT/Design/Tamiami-Trail/design/cost-analysis/alternative-3/(Type C Bridge 1 and 8 xls)COST

Alternative 3 (Bridges 1 & 8)

ITEM	QUANTITY	UNITS	UNIT PRICE	AMOUNT
SUPERSTRUCTURE:				
Class II Concrete (Superstructure)	1372.1	CY	\$310.00	\$425,364
Reinforcing Steel - (Superstructure)*	281289	LBS	\$0.45	\$126,580
Bridge Floor Grooving	5396	SY	\$2.50	\$13,489
Traffic Railing Barrier	2428.0	FT	\$35.00	\$84,980
Expansion Joints***	215.4	FT	\$84.00	\$18,095
AASHTO Beam, Type V	4856.0	FT	\$92.00	S446,752
Neoprene Bearing Pads	26.880	CY	\$425,00	\$11,424
		Superstr	ucture Subtotal	\$1,126,683
SUBSTRUCTURE:				
Class II Concrete (Substructure)	341.1	CY	\$415.00	\$141,573
Reinforcing Steel (Substructure)**	49465	LBS	\$0.45	\$22,259
Pile Hole, Preformed	0	EA	\$0.00	\$0
Test Piles	0	Ft.	\$0.00	\$0
Prestressed Concrete Piles (F & 1)	0	Ft.	\$0.00	\$0
Pile Splices	0	EA	\$0.00	\$0
Drilled shaft	986	LF	\$220.00	\$216,920
Test load for drilled shaft	ı	EA	\$50,000.00	\$50,000
Core(Shaft Excavation)	0	LF	\$0.00	\$0
Temporary casing	0	LF	\$0.00	\$0
Casing splice	0	EA	\$0.00	\$0
Excavation, unclassified shaft	0	LF	\$0.00	\$0
Drilled shaft sidewall overreaming	0	LF	\$0.00	SO
Excavation, unclassified extra depth	0	LF	\$0.00	SO
		Substr	ucture Subtotal	\$430,752
		Construction	n Cost Subtotal	\$1,557,435
Mobilization (5% of Construction Cost)	1	LS		\$77,872
Contingency (15% of Construction Cost)	1	LS		\$233,615.29
		Total Co	onstruction Cost	\$1,868,922
			re Footage (Ft.)	52,303
		Cost 1	Per Square Foot	\$35.73

Note: Extra Pier Concrete, Reinforcement and Drilled Shaft are considered due to straddle piers.

*RATIO REBAR:CONC. (SUPERSTRUCTURE):

205 Lbs/CY

**RATIO REBAR:CONC. (SUBSTRUCTURE):

145 Lbs/CY.

***NO.OF EXPANSION PIERS:

5

Corps of Engineers, Jacksonville, Florida

\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative-3\[Type D Bridges 2 and 7.xls]SUPER_COM

Alternative 3 (Bridges 2 & 7)

BRIDGE AND SPAN LENGTHS

Done by: M. LeComte

Checked by: C. Li

November 29, 2000

Determine Bridge Length based on hydraulic opening:

Hydraulic Opening Width at Natural Ground Level

Natural Ground Elevation 5.00 Ft.

Control Water Elevation 9.00 Ft.

Minimum Clearance over Control Water Elevation 6.00 Ft.

Berm Width 3.00 Ft.

Vertical Distance from bottom of beams to top of Berm where slope starts 2.25 Ft.

Distance From FFBW to Front Edge of End Bent Cap

2.00 Ft.

200.00 Ft.

Minimum Span length

28.00 Ft.

Preliminary Bridge Length (No adjustment due to pile/drilled shaft in the opening), L' = 241.00 Ft.

Number of	ADJUS	TED BRIDGE LI	ENGTH (L)	ADJ	USTED SPA	AN LENGTH
Spans	18 in. Pile	24 in. Pile	36 in. Drilled Shaft	18 in. Pile	24 in. Pile	36 in. Drilled Shaft
3	244,00 Ft.	245.00 Ft.	247.00 Ft.	81.33 Ft.	81.67 Ft.	82.33 Ft.
4	245.50 Ft.	247.00 Ft.	250.00 Ft.	61.38 Ft.	61.75 Ft.	62.50 Ft.
5	247.00 Ft.	249.00 Ft.	253.00 Ft.	49.40 Ft.	49.80 Ft.	50.60 Ft.
6	248.50 Ft.	251.00 Ft.	256.00 Ft.	41.42 Ft.	41.83 Ft.	42.67 Ft.
7	250.00 Ft.	253.00 Ft.	259.00 Ft.	35.71 Ft.	36.14 Ft.	37.00 Ft.
8	251.50 Ft.	255.00 Ft.	262.00 Ft.	31.44 Ft.	31.88 Ft.	32.75 Ft.
9	253.00 Ft.	257.00 Ft.	265.00 Ft.	28.11 Ft.	28.56 Ft.	29.44 Ft.

Corps of Engineers, Jacksonville, Florida

Alternative 3 (Bridges 2 & 7)

BEAM SPACING vs. DESIGN SPAN

\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative-3\(Type D Bridges 2 and 7.xls\SUPER_COMP

November 29, 2000

Checked by: C. Li

Determine beam spacing and design span:

Bridge Width: 43.08 Ft.

Slab Thickness: 8.00 in.

Number	Beam			² Design Sp	an		
of Beams	Spacing	AASHTO Type II	AASHTO Type III	AASHTO Type IV	18" Double T	24" Double T	30" Double T
4	10.77 Ft.	46.00 Ft.	65.00 Ft.	84.00 Ft.			
5	8.62 Ft.	52.00 Ft.	73.00 Ft.	90.00 Ft.			
6	7.18 Ft.	58.00 Ft.	78.00 Ft.	96.00 Ft.	40.00 Ft.	50.00 Ft.	60.00 Ft.
7	6.15 Ft.	62.00 Ft.	82.00 Ft.	98.00 Ft.			
8	5.39 Ft.	66.00 Ft.	84.00 Ft.	102.00 Ft.			

¹Beam spacing is based on assuming the cantilever to be half of the beam spacing.

²Design spans are determined from the charts based on the beam spacing given.

Corps of Engineers, Jacksonville, Florida

Done by: M. LeComte

Alternative 3 (Bridges 2 & 7)

AASHTO BEAMS COMPARISON

Checked by: C. Li

L'STRUCT\Design'Tamiami-Trail\design'cost-analysis\alternative-3\[Type D Bridges 2 and 7.xls\[SUPER_COMP]

November 29, 2000

Number	/	Adjusted Spa Length	n				mber of A Beams Req					
of	PIL	ES	Dritted		18" Piles			24" Piles		Dri	lled S	haft
Spans	18 in.	24 in.	Shaft	11	ш	IV	11	III	IV	II	Ш	IV
3	81.33 Ft.	81.67 Ft,	82.33 Ft.		7	4		7	4		8	4
4	61.38 Ft.	61.75 Ft.	62.50 Ft.	7	4	4	7	4	4	8	4	4
5	49.40 Ft.	49.80 Ft.	50.60 Ft.	5	4	4	5	4	4	5	4	4
6	41.42 Ft.	41.83 Ft.	42.67 Ft.	4	4	4	4	4	4	4	4	4
6 7	35.71 Ft.	36.14 Ft.	37,00 Ft.	4	4	4	4	4	4	4	4	4
8	31.44 Ft.	31.88 Ft.	32.75 Ft.	4	4	4	4	4	4	4	4	4
9	28.11 Ft.	28.56 Ft.	29,44 Ft.	4	4	4	4	4	4	4	4	4
										+		

Number					Construction SHTO Bea				
of		18 in. Piles		2000	24 in. Piles		DF	RILLED SHA	AFT
Spans	11	111	IV	П	III	IV	П	III	IV
3	N/A	\$114,436	\$81,984	N/A	S114,905	\$82,320	N/A	\$132,392	\$82,992
4	\$92,799	\$65,794	\$82,488	\$93,366	\$66,196	\$82,992	\$108,000	\$67,000	\$84,000
5	\$66,690	\$66,196	\$82,992	\$67,230	\$66,732	\$83,664	\$68,310	\$67,804	\$85,008
6	\$53,676	\$66,598	\$83,496	\$54,216	\$67,268	\$84,336	\$55,296	\$68,608	\$86,016
7	\$54,000	\$67,000	\$84,000	\$54,648	\$67,804	\$85,008	\$55,944	\$69,412	\$87,024
8	\$54,324	\$67,402	\$84,504	\$55,080	S68,340	\$85,680	\$56,592	\$70,216	\$88,032
9	\$54,648	\$67,804	\$85,008	\$55,512	S68,876	\$86,352	\$57,240	\$71,020	\$89,040

18° F	Most Economical AASHTO											
	TLES	24" I	PILES	DRILLE	D SHAFT							
TYPE	COST	TYPE	COST	TYPE	COST							
IV	581,984	IV	\$82,320	IV	S82,992							
III	\$65,794	Ш	\$66,196	III	\$67,000							
III	\$66,196	Ш	\$66,732	III	\$67,804							
П	\$53,676	II	\$54,216	[]	\$55,296							
II	\$54,000	[]	\$54,648	П	\$55,944							
II	\$54,324	II	\$55,080	II	\$56,592							
II	\$54,648	II	\$55,512	11	\$57,240							
	III II II II II	III \$65,794 III \$66,196 II \$53,676 II \$54,000 II \$54,324	III S65,794 III III S66,196 III III S53,676 II II \$54,000 II II \$54,324 II	HI \$65,794 HI \$66,196 HI \$66,732 H \$53,676 H \$54,216 H \$54,484 H \$55,080	HI S65,794 HI \$66,196 HI HI S66,196 HI \$66,732 HI HI \$53,676 HI \$54,216 HI \$54,000 HI \$55,080 HI							

Corps of Engineers, Jacksonville, Florida

1703)

Done by: M. LeComt

Alternative 3 (Bridges 2 & 7)

SUPERSTRUCTURE ALTERNATIVES COMPARISON

Checked by: C. Li

:\STRUCT\Design\Tantiami-Trail\design\cost-analysis\alternative-3\[Type D Bridges 2 and 7.xls\SUPER_COM

November 29, 2000

	AASH	TO BEA	MS WITH	DECK			Flo	rida Doul	ole Tee Bean	1S	
18"	PILES	24"	PILES	DRILL	ED SHAF	18" F	PILES	24"	PILES	DRILLE	D SHAF
TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST
IV	\$186,394	IV	\$187,157	IV	\$188,685	N/A		N/A		N/A	
111	\$170,845	111	\$171,889	111	\$173,977	N/A		N/A		N/A	
111	\$171,889	111	\$173,281	- m-	\$176,065	FDT24	\$318,630	FDT24	\$321,210	FDT30	\$379,500
11	\$160,011	11	\$161,621	11	\$164,840	FDT24	\$320,565	FDT24	\$323,790	FDT24	\$330,240
11	\$160,977	11	\$162,909	II	\$166,772	FDT18	\$270,000	FDT18	S273,240	FDT18	\$279,720
11	\$161,943	11	\$164,197	- 11	\$168,704	FDT18	\$271,620	FDT18	\$275,400	FDT18	\$282,960
11	\$162,909	11	\$165,484	11	\$170,636	FDT18	\$273,240	FDT18	\$277,560	FDT18	\$286,200
71127,311											
	IV III III II II	18" PILES TYPE COST IV \$186,394 111 \$170,845 111 \$171,889 11 \$160,011 11 \$160,977 11 \$161,943	18" PILES 24" TYPE COST TYPE IV \$186,394 IV III \$170,845 III III \$171,889 III II \$160,011 II II \$160,977 II II \$161,943 II	18" PILES 24" PILES TYPE COST TYPE COST IV \$186,394 IV \$187,157 III \$170,845 III \$171,889 III \$171,889 III \$173,281 II \$160,011 II \$161,621 II \$162,909 II \$164,197	18" PILES 24" PILES DRILL TYPE COST TYPE COST TYPE IV \$186,394 IV \$187,157 IV III \$170,845 III \$171,889 III III \$171,889 III \$173,281 III II \$160,011 II \$161,621 II II \$160,977 II \$162,909 II II \$161,943 II \$164,197 II	TYPE COST TYPE COST TYPE COST IV \$186,394 IV \$187,157 IV \$188,685 III \$170,845 III \$171,889 III \$173,977 III \$171,889 III \$173,281 III \$16,665 II \$160,011 II \$161,621 II \$164,840 II \$160,977 II \$162,909 II \$166,772 II \$161,943 II \$164,197 II \$168,704	18" PILES 24" PILES DRILLED SHAF 18" F TYPE COST TYPE COST TYPE IV \$186,394 IV \$187,157 IV \$188,685 N/A III \$170,845 III \$171,889 III \$173,977 N/A III \$171,889 III \$173,281 III \$176,065 FDT24 II \$160,011 II \$161,621 II \$164,840 FDT24 II \$160,977 II \$162,909 II \$166,772 FDT18 II \$161,943 II \$164,197 II \$168,704 FDT18	18" PILES 24" PILES DRILLED SHAF 18" PILES TYPE COST TYPE COST TYPE COST IV S186,394 IV S187,157 IV S188,685 N/A III S170,845 III S171,889 III S173,977 N/A III S171,889 III S173,281 III S176,065 FDT24 S318,630 II S160,011 II S161,621 II S164,840 FDT24 S320,565 II S160,977 II S162,909 II S166,772 FDT18 S270,000 II S161,943 II S164,197 II S168,704 FDT18 S271,620	18" PILES 24" PILES DRILLED SHAF 18" PILES 24" PILES TYPE COST N/A N/A N/A N/A N/A N	18" PILES 24" PILES DRILLED SHAF 18" PILES 24" PILES TYPE COST TYPE COST TYPE COST TYPE COST IV \$186,394 IV \$187,157 IV \$188,685 N/A N/A III \$170,845 III \$171,889 III \$173,281 III \$176,065 FDT24 \$318,630 FDT24 \$321,210 II \$160,011 II \$161,621 II \$164,840 FDT24 \$320,565 FDT24 \$323,790 II \$160,977 II \$162,909 II \$166,772 FDT18 \$270,000 FDT18 \$273,240 II \$161,943 II \$164,197 II \$168,704 FDT18 \$271,620 FDT18 \$275,400 II \$161,943 II \$164,197 II \$168,704 FDT18 \$271,620 FDT18 \$275,400 II \$161,943 II \$164,197 II \$168,704 FDT18 \$271,620 FDT18 \$275,400 II \$161,943 II \$164,197 II \$168,704 FDT18 \$271,620 FDT18 \$275,400 II \$161,943 II \$164,197 II \$168,704 FDT18 \$271,620 FDT18 \$275,400 II \$161,943 II \$164,197 II \$168,704 FDT18 \$271,620 FDT18 \$275,400 II \$161,943 II \$164,197 II \$168,704 FDT18 \$271,620 FDT18 \$275,400 II \$161,943 II \$164,197 II \$168,704 FDT18 \$271,620 FDT18 \$275,400 II \$161,943 II \$164,197 II \$1	18" PILES 24" PILES DRILLED SHAF 18" PILES 24" PILES DRILLED SHAF 18" PILES COST TYPE TYPE COST TYPE COST TYPE COST TYPE COST TYPE T

Deck Reinforcement 205 lbs/CY concrete Cost of Deck per foot \$428/ft.

			PREC	AST SLAB				MOST	ECONOM	ICAL SUPE	RSTRU	CTURE A	LTERNA	TIVE	
Number	18"	PILES	24"	PILES	DRILL	ED SHAF		18 in, Pil	e	2	4 in. Pil	e	36	in. Sh	aft
of	Thick-	Estimated	Thick-	Estimated	Thick-	Estimated	Number	Beam	Estimated	Number	Beam	Estimated	Number	100000000000000000000000000000000000000	Estimated
Spans	ness	Cost	ness	Cost	ness	Cost	of Beams	Type	Cost	of Beams	Type	Cost	of Beams	Type	Cost
3							4	IV	\$186,394	4	IV	\$187,157	4	IV	\$188,685
4						4	4	111	\$170,845	4	111	\$171,889	4	III	\$173,977
5						Carrier F	4	111	\$171,889	4	111	\$173,281	4	111	\$176,065
6							4	11	\$160,011	4	- 11	\$161,621	4	11	\$164,840
7	21	\$523,582	22	\$555,097	22	\$568,261	4	II	\$160,977	4	11	\$162,909	4	11	\$166,772
8	19	\$476,560	20	\$508,623	20	\$522,585	4	II	\$161,943	4	11	\$164,197	4	II	\$168,704
9	18	\$454,170	18	\$461,351	18	\$475,712	4	II	\$162,909	4	II	\$165,484	4	11	\$170,636
					1, 1,										

Tamiani Trail Modified Water Deliveries to Everglades National Purk Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida

FOUNDATION LOADS and NUMBER of 18 in. PRESTRESSED PILES

Alternative 3 (Bridges 2 & 7)

Done by: M. LeCounte Checked by: C. Li

November 29, 2000

Bridge Wildh 43.08 Ft.	Z	Number of lanes	ы		Numb	Number of Florida Double Tee	ouble Tee = 6
Number of Spans	3 spans	4 spans	5 spans	6 spans	7 spans	S spans	9 spans
Beam Type	N	Ξ	H	п	ш	=	п
Beam Weight (kfft)	0.822 kH	0.583 Mf	0.583 MF	0.384 kif	0.384 kef	0.384 Mf	0.384 NF
Number of Beams	4 beams	4 beams	4 beams	4 beans	4 beams	4 beams	4 beams
(I) distribution	81.33 Ft.	61.38 Pt.	49.40 FL	41.42 Ft.	35.71 Ft.	31.44 PL	28.11 Ft.
Beam Span (ft)	79.33 Ft.	59.38 Ft.	47.40 Ft.	39.42 Ft.	33.71 PL	29.44 PL	26.11 Ft.
Bridge Deck Thickness (in)	8.00 in.	8.00 in.	8,00 in.	8.00 in	8.00 in.	8.00 in.	8.00 in.
Comp. Loads (ksf)	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf
Barrier Loads (k/ft)(both sides)	0.836 Mf	0.836 kH	0.836 kdf	0.836 ldf	0.836 klf	0.836 kJf	0.836 kdf
Dead Load							
Beam Load (Tind Bent)	399.8 k	272.4 k	219.2 k	167.3 k	144.3 k	127.0 k	113.6 k
Bearn Load (Pier)	4 7.66F	544.8 k	438.5 k	334.7 k	288.6 k	254.0 k	227.1 k
Live Load							
Reduction factor Impact factor for Substructure	0.1						
II. Reaction per lane (END RENT)							
Truck load	. 63.7 k	61.1 k	58.4 k	55.8 k	53.2 k	50.6 k	48.1 k
Lane load	52.0 k	45.6 k	41.8 k	39.3 €	37.4 k	36.1 k	35.0 k
Total Live Load (END BENT)	172.1 k	164.8 k	157.7 k	150.6 k	143.6 k	136.7 ₺	129.93
LL Reaction per lane (PIER)							
Truck load	65.1 k	62.9 k	60.7k	58.5 k	\$6.3 k	54.2 k	52.1 k
Total Live Load (PIER)	210.7 k	176.3 k	34.0 K	157.9 k	152.1 k	146.3 k	140.6 k
Total Load Separation of the BEND	748.0 k	613.3 k	553.0 k	494.0 k	454.0 k	439.8 k	419.5 k
Superstructure Load (PITR)	1068.6 k	779.2 k	660 4 k	550.7 k	498.8 k	458.5 k	425.9 k
Foundation Maximum pile spacing	13.0 Ft.						
Service Load Capacity of Piles Location of Ext. pile from coping at End Bent/Pier	147.0 k 4.0 Ft.						
Number of Piles Required For END BENT	9	9	4	4	4	4	4.
Number of Piles Required For PIER	00	9	5	+	4	400	4
Service Design Load (END BENT)	1.25 K	1.2 K	155 £	X + 7 I	3 011	4011	100

November 29, 2000 Done by: M. LeCome Checked by: C. Li FOUNDATION LOADS and NUMBER of 24 in. PRESTRESSED PILES Taminmi Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Thorida distillenance Full upe D Bridges 2 and 7. skiSUPER, COMP. Alternative 3 (Bridges 2 & 7)

Bridge Width 43.08 Ft.	Nun	Number of lancs	3		Numbe	r of Florida L	Number of Florida Double Tee = 6
Number of Spans	3 spans	4 spans	5 spans	surds 9	7 spans	8 spans	9 spans
Beam Type	2	. 🗏	Е	п	п	п	E
Beam Weight (k/ft)	0.822 Mf	0.583 kif	0 583 kif	0.384 Mf	0.384 MF	0.384 kIF	0.384 kJf
Number of Beans	4 beams	4 beams	4 beams	4 beams	4 hearns	4 beams	4 beams
Span Length (ft)	81.67 Ft.	61.75 Ft.	49.80 Ft.	41.83 Pt.	36.14 FL	31.88 Ft.	28.56 Ft.
Beam Span (R)	79.67 Ft.	59.75 Ft.	47.80 Ft.	39.83 PL	34.14 Ft.	29.88 Ft.	26.56 Ft.
Bridge Deck Thickness (m)	8.00 in.	8.00 in.	8.00 in	8.00 in.	8.00 in.	8.00 in.	8.00 in.
Comp. Loads (ksf)	0.035 ksf	0.035 ksf	0.035 ksf	0,035 ksf	0.035 ksf	0.035 ksf	0.035 ksf
Barrier Loads (k/ft/Nboth sides)	0.836 kaf	0.836 klf	0.836 kH	0.836 kJf	0.836 kJf	0.836 kHr	0.836 kif
Dead Load							
Beam Load (End Benr)	401.5 k	274.1 k	221.0 k	169.0 k	146.0 k	128.8 k	115.4 k
Beam Load (Pier)	803.0 k	548.1 k	442.0 k	338.0 k	292.0 k	257.6 k	230.7 ₺
Live Load							
	6.0						
Impact factor for Substructure	67						
LL Reaction per lane (END BENT)					1		
Truck load	63.8 k	61.1 k	58.5 k	55.9 k	53.4 K	50.9 k	48.5 k
Lane load	52.1 k	45.8 k	41.9 k	39.4 K	37.6 k	36.2 k	35.1 k
Total Live Load (END BHNT)	172.2 k	165.0 k	158.0 k	151.0 k	144.2%	137.5 K	130.9 K
I.I. Reaction per lane (PIER)							
Truck load	65.1 k	62.9 k	80.8 k	39 6 6 9 6 6 9 6 6	56.5 k	54.4 k	52.4 k
Lanc load	78.3 k	65.5 k	57.9 k	N 9770	49.1 %	45.4 %	44.3 K
Total Live Load (PHER)	211.3 k	176.9 K	1040 K	3 6.8CI	127.0 K	147.0 K	A C.1FI
TotalLoad	000	11. 217	3	4 6 306	456.2.1	147.41	12 667
Superstructure Load (LIND BEINT) Superstructure Load (PIER)	1072.5 k	783.2 k	664.2 k	554.4 k	502.8 k	462.7 k	430.4 k
Foundation	L						
Service Load Canacity of Piles	260.0 k						
Location of Ext. pile from coming at End Bent/Pier	4.0 Ft.						
Number of Piles Required For END BENT	4	+	4	4	খ	*	4
Number of Piles Required For PIER	vı	4	4	4	Ŧ	4	ব
Service Design Load (END BFNT)	187 k	154 k	139 k	124 k	117 k	1111 k	106 k
Service Decim Load (PIFR)	214 1	1961	166 k	139 k	126 k	116 k	108 k

Tamiumi Truil Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRK/SEIS Corps of Engineers, Jacksonville, Florida

Corps o	Engineers,	Corps of Engineers, Jacksonville, Florida	lorida				Done by: M. LaConne	
Alternative 3 (Bridges FO	UNDATIO	FOUNDATION LOADS on DRILLED SHAFT	on DRILLE	ED SHAFT			Checked by: C. Li	
LISTRUCT Design Tuniami-Trafficles policed emolysis/attenuates 3/(Type D Bridges 2 and 7.16)\$UPER_COMP	ype D Bridges	2 and 7.skjSUPES	COMP				November 29, 2000	, 2000
Bridge Width 43.08 Ft.	Na	Number of lanes	3		Numbe	Number of Florida Double Tee	Jouble Tee = 6	П
Number of Spans	3 spans	4 spans	\$ spans	6 spans	7 spans	S spans	9 spans	
Beam Type		Ħ	Ħ	=	"	п	п	
Beam Weight (k/ft)	0.822 kdf	0.583 kdf	0.583 kdf	0.384 kdf	0.384 kdf	0.384 MF	0.384 kif	
Number of Beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams	4 beams	
Span Longth (ft)	82.33 Ft.	62.50 Ft.	50.60 Ft.	42.67 Ft.	37.00 H.	32.75 FL	29.44 R.	
Beam Span (ft)	80.33 FL	60.50 Ft.	48.60 Ft.	40.67 Ft.	35.00 Ft.	30.75 FL	27,44 Ft.	
Bridge Deck Thickness (in)	8.00 in.	8,00 in.	8.00 in.	8.00 in.	8.00 in.	8.00 in.	8.00 in.	
Comp. Loads (ksf)	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	
Barrier Loads (k/fi)(both sides)	0.836 kH	0.836 kdf	0.836 kdf	0.836 kH	0.836 kJf	0.836 kIf	0.836 kdf	
Dead Load Beam Load (End Bent)	48.87	277.4 k	224.6 k	172,4 k	149.5 k	132.3 k	119.0 k	
Beam Load (Pier)	809.5 k	554.8 k	449.1 k	344.8 k	299.0 K	264.6 k	237.9 k	
Live Load Reduction factor Impact factor for Substructure	0.9							
LL Reaction per lane (END BENT)	2	4613	47.85	45.95	38 85	5154	46.216	
Lane load	\$2.3k	46.0 k	42.2 k	39.7 k	37.8 k	36.5 k	35.4 k	
Tetal Live Load (END BENT)	172.4 k	165.4 k	158.5 k	151.9 k	145,4 k	139.0 k	132.8 k	
LJ. Reaction per lane (PIER)							i	
Truck knad	65.2 k	63.0 k	36.00	58.9 A	36.9K	34.9 K	35.0 %	
Lond Live Load (PHER)		178.2 k	164.5 k	159.0 k	153.5 k	148.2 k	143.0 k	
Total Load		•						
Superstructure Load (END BENT)	782.3 k	647.9 k	588.3 k	529.4 k	500.0 k	476.5 k	456.9 k	
Superstructure Load (PIER)	1099.6 k	810.5 k	691.2 k	581.3 k	530,1 k	490.4 k	458.5 k	
Foundation								
Maximum pile spacing Location of Ext. shaft from coping at End Ben.	16.0 Ft. 6.0 Ft.							
Number of Piles Required For END BENT	en	•	۳۱	m	ю.	Les 1	en «	
Number of Piles Required For PIER	C 3	7	7	61	r1 !	7	7 5	
Service Design Load (END BENT)	261 k	216 k	196 k	176 K	765 1	3.9 K	132 K	
SCIVICE Design Load (FIFT)	300 K	4 004	4 24 5		4	4		

Corps of Engineers, Jacksonville, Florida

1,R2%

Done by: M. LeComt

Checked by: C. Li

November 29, 2000

Alternative 3 (Bridges 2 & 7)

INTERMEDIATE BENTS / PIERS

1:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative-3\[Type D Bridges 2 and 7.xls]SUPER_COMP

Intermediate Bent Section

Pier Section (2 Drilled Shafts)

Estimated Cost of Bent Cap	\$6,897	\$6,897	\$9,196
Reinforcement at 145 lbs/CY	2082 lbs	2082 lbs	2776 lbs
Total Concrete Volume	14.4 CY	14.4 CY	19.1 CY
Bent Cap Length	43 ft.	43 ft.	43 ft.
Bent cap cross sectional area	9.0 sq.ft	9.0 sq.ft	12.0 sq.ft
Estimated Cost of One Pile/Drilled Shaft	\$891	\$1,242	\$4,840
Total Length of Pile	27 ft.	27 ft.	22 ft.
Pile Length Above Ground	8 ft.	8 ft.	8 ft.
Estimated Pile Embedment Length	19 ft.	19 ft.	14 ft.
Foundation Type	18 in. Pile	24 in. Pile	36 in. Shafi

PRESTRESSED PILES	18 in.	24 in.	DRILLED SHAFT	36 in.
Number of test loads per bridge	2 ca.	2 ea.	Number of test loads per bridge	1 ea.
			Core (Shaft Excavation)	
			Length of temporary casing	
Est, total cost of test piles w/ dynamic load test per bridge	\$13,440	\$13,440	% of casing splice	
			Excavation, unclassified shaft	
% of pile splice	10%	10%	Drilled shaft sidewall overreaming	
% of pile hole preformed	100%	100%	Excavation, unclassified extra depth	

Number	Number	of Piles	Number of	Total Co	st of Piles	Total Cost of	Tot	al Estimated	No.
of	Requ	ired	Drilled Shafts	per Be	nt / Pier	Drilled Shaft		of ONE Pic	
Spans	18 in.	24 in.	36 in.	18" Pile	24" Pile	per Pier	18" Pile	24" Pile	36" Shaft
3	8	5	2	\$15,536	\$14,015	\$34,680	\$22,433	\$20,912	\$43,876
4	6	4	2	\$11,092	\$10,316	\$26,347	\$17,989	\$17,213	\$35,543
5	5	4	2	\$8,870	\$9,196	\$22,180	\$15,767	\$16,093	\$31,376
6	4	4	2	\$7,096	\$8,524	\$19,680	\$13,993	\$15,421	\$28,876
7	4	4	2	\$6,648	\$8,076	\$18,013	\$13,545	\$14,973	S27,209
8	4	4	2	\$6,328	\$7,756	\$16,823	\$13,225	\$14,653	\$26,019
9	4	4	2	\$6,088	S7,516	S15,930	\$12,985	\$14,413	\$25,126
									34

Corps of Engineers, Jacksonville, Florida

Alternative 3 (Bridges

2 & 7)

END BENTS

Done by: M. LeCo

Checked by: C. Li

November 29, 2000

	Foundation Type	18 in. Pile	24 in. Pile	36 in. Shaft
Estimat	ed Pile Embedment Length	19 ft.	19 ft.	14 ft.
	Pile Length Above Ground	8 ft.	8 ft.	8 ft.
3.	Total Length of Pile	27 ft.	27 ft.	22 ft.
Estimated Co	st-of One-Pile/Drilled Shaft	\$891	\$1,242	\$4,840
В	ent cap cross sectional area	7.5 sq.ft	7.5 sq.ft	12.0 sq.ft
	Bent Cap Length	43 ft.	43 ft.	43 ft.
	Total Concrete Volume	12.0 CY	12.0 CY	19.1 CY
Reinforcement at	145 lbs/CY	1735 lbs	1735 lbs	2776 lbs
	Estimated Cost of Bent Cap	\$5,747	\$5,747	\$9,196

I:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative-3\[Type D Bridges 2 and 7.xls\[SUPER_COMP]

PRESTRESSED PILES	18 in.	24 in.	DRILLED SHAFTS # 36 in.
			Core(Shaft Excavation)
]			Length of temporary casing
			Percentage of casing splice
			Excavation, unclassified shaft
% of pile splice	10%	10%	Drilled shaft sidewall overreaming
% Pile hole preformed	100%	100%	xcavation, unclassified extra depth

Number	Numbe	er of Piles	Number of	Total Co	st of Piles	Total Cost of	To	tal Estimated	Cost	
of	Req	juired ¹	Drilled Shafts ²	per Be	nt / Pier	Drilled Shaft	of ONE Pier			
Spans	18 in.	24 in.	36 in.	18" Pile	24* Pile	per Pier	18" Pile	24" Pile	36" Shaf	
3	8	6	5	\$8,816	\$8,754	\$24,200	\$27,951	\$27,889	\$46,783	
4 .	7	6	5	\$7,714	\$8,754	\$24,200	\$24,181	\$25,221	\$44,115	
5	6	6	5	\$6,612	\$8,754	\$24,200	\$23,079	S25,221	\$44,115	
6	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	S22,794	\$41,688	
7	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	\$22,794	\$41,688	
8	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	\$22,794	\$41,688	
9	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	\$22,794	\$41,688	
		+1 11 14		41 446	# C P # 1 (1) 1 2 - 4	4	100-10-1	10.00	W-	
		A 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			22712	-				

¹Includes wingwall piles for Type IV, III, II beams.

²Includes wingwall drilled shafts for Type IV, III, II beams.

Corps of Engineers, Jacksonville, Florida

1783,

Done by: M. LeComt

Alternative 3 (Bridges 2 & 7)

SUBSTRUCTURE & SUPERSTRUCTURE ALTERNATIVES COMPARISON

Checked by: C. Li

STRUCT/Design/Tamiami-Trail/design/cost-analysis/alternative-3/[Type D Bridges 2 and 7.xls|SUPER_COMP

November 29, 2000

Number	ADJU	ISTED SPAN	N LENGTH	Number	C	ost of Substruc	ture	Cos	t of Superstru	cture	Total Cost of Structure		
of	18 in.	24 in.	36 in.	of	18 in.	24 in.	36 in.	18 in.	24 in.	36 in.	18 in.	24 in.	36 in.
Spans	Pile	Pile	Shaft	Piers	Pile	Pile	Shaft	Pile	Pile	Shaft	Pile	Pile	Shaft
3	81.33 Ft.	81.67 Ft.	82,33 Ft.	2	\$100,768	\$97,602	\$181,319	\$186,394	\$187,157	\$188,685	\$287,161	S284,759	\$370,004
4	61.38 Ft.	61.75 Ft.	62.50 Ft.	3	\$102,328	\$102,080	\$194,858	\$170,845	\$171,889	\$173,977	S273,174	\$273,969	\$368,835
5	49.40 Ft.	49.80 Ft.	50.60 Ft.	4	\$109,225	\$114,813	\$213,734	\$171,889	\$173,281	\$176,065	\$281,114	\$288,094	\$389,799
6	41,42 Ft.	41.83 Ft.	42.67 Ft.	5	\$111,268	\$122,692	\$227,756	\$160,011	\$161,621	\$164,840	\$271,279	\$284,313	\$392,596
7	35.71 Pt.	36.14 Ft.	37.00 Ft.	6	\$122,573	\$135,425	\$246,632	\$160,977	\$162,909	\$166,772	\$283,550	\$298,334	\$413,404
8	31.44 Ft.	31.88 Ft.	32.75 Ft.	7	\$133,878	\$148,158	\$265,508	\$161,943	\$164,197	\$168,704	\$295,821	\$312,354	\$434,211
g	28.11 Ft.	28.56 Ft.	29.44 Ft.	8	\$145,183	\$160,891	\$284,383	\$162,909	\$165,484	\$170,636	\$308,091	\$326,375	\$455,019
	-	-											
													- 1/2
													2

SUMMARY OF MOST ECONOMICAL ALTERNATIVES FOR EACH SPAN ARRANGEMENT:

Number of Spans	Estimated Cost	Foundation Alternative	Superstructure Alternative	Number of Spans	Number of Beams	Number of Piles or Drilled Shafts	Total Length of Piles or Drilled Shafts	Number of Test Piles	Total Length of Test Piles
3	\$284,759	24 in.	Type IV	3	4	20	540 ft	2	84 ft
4	\$273,174	18 in.	Type III	4	4	30	810 ft	2	84 ft
5	\$281,114	18 in.	Type III	5	4	30	810 ft	2	84 ft
6	\$271,279	18 in.	Type II	6	4	30	810 ft	2	84 ft
7	\$283,550	18 in.	Type II	7	4	34	918 ft	2	84 ft
8	\$295,821	18 in.	Type II	8	4	38	1026 ft	2	84 ft
9	\$308,091	18 in.	Type II	9	4	42	1134 ft	2	84 ft

\$271,279 <--- Minimum

RESULT OF COST COMPARISON STUDY:

Most economical superstructure type: Type II

Most economical substructure type: 18 in.

Optimum Span Arrangement: 6 spans at 41.42 FT.

Total bridge length: 248.50 Ft.

Total number of beams: 24

Total length of beams: 994.00 Ft.

Number of piles or drilled Shafts: 30

Length of Piles or drilled Shafts: 810.00 Ft.

Corps of Engineers, Jacksonville, Florida

\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative-3\[Type D Bridges 2 and 7.xls\]SUPER_COMP

Alternative 3 (Bridges 2 & 7)

ESTIMATE OF PROBABLE CONSTRUCTION COSTS

Done by: M. LeComte

Checked by: C. Li

10,706

\$33.48/sf

November 29, 2000

Item	Quantity	Units	Unit Price	Amount
SUPERSTRUCTURE:				
Concrete	264.5	CY	\$310	\$81,990
Reinforcing Steel	54219	LBS	\$0.45	\$24,399
Bridge Floor Grooving	1104	SY	\$2.50	\$2,761
Traffic Railing Barrier	497.0	FT	\$35	\$17,395
Expansion Joints ³	86.2	FT	\$84	\$7,238
Type II Beam	994.0	FT	\$54	\$53,676
Neoprene Bearing Pads	5.251	CY	\$425	\$2,232
		Superstr	ucture Subtotal	\$189,690
SUBSTRUCTURE:				
Concrete	130.1	CY	\$415	\$53,997
Reinforcing Steel ²	18866	LBS	\$0.45	\$8,490
Pile Hole, Preformed	30	EA	\$200	\$6,000
Test Piles	84	Ft.	\$160	\$13,440
18 in. Prestressed Concrete Piles (F & I)	810	Ft.	\$33	\$26,730
Pile Splices	3	EA	\$110	\$330
Drilled shaft		LF	\$220	
Test load for drilled shaft		EA	\$50,000	
Core (Shaft Excavation)		LF		
Temporary casing		LF		
Casing splice		EA		
Excavation, unclassified shaft		LF		
Drilled shaft sidewall overreaming		LF		
Excavation, unclassified extra depth		LF		
		Substi	ucture Subtotal	\$108,987
	(Constructio	n Cost Subtotal	\$298,677
Mobilization (5% of Construction Cost)	1	LS		S 14,934
Contingency (15% of Construction Cost)	i	LS		\$ 14,934 \$ 44,802
	То	otal Cons	truction Cost	\$358,412

¹Ratio of reinforcement to superstructure concrete:

205 Lbs/CY. Lbs/CY.

²Ratio of reinforcement to substructure concrete: 145

³Number of expansion piers:

2

Deck Square Footage (Ft.) Cost Per Square Foot

Corps of Engineers, Jacksonville, Florida

\STRUCT\Design\Tamiami-Trait\design\cost-analysis\alternative-3\[Type E Bridge 3.xls]LENGTH

Alternative 3 (Bridge 3)

BRIDGE AND SPAN LENGTHS

Done by: M. LeComte

Checked by: C. Li

November 29, 2000

Determine Bridge Length based on hydraulic opening:

Hydraulic Opening Width at Natural Ground Level

150.00 Ft.

Control Water Elevation

Natural Ground Elevation 5.00 Ft. 9.00 Ft.

Minimum Clearance over Control Water Elevation

6.00 Ft.

Berm Width

3.00 Ft.

Vertical Distance from bottom of beams to top of Berm where slope starts

2.25 Ft.

Distance From FFBW to Front Edge of End Bent Cap

2.00 Ft.

Minimum Span length

28.00 Ft.

Preliminary Bridge Length (No adjustment due to pile/drilled shaft in the opening), L' =

191.00 Ft.

Number of	ADJUS	TED BRIDGE LI	ENGTH (L)	ADJ	USTED SPA	AN LENGTH
Spans	18 in. Pile	24 in. Pile	36 in. Drilled Shaft	18 in. Pile	24 in. Pile	36 in. Drilled Shaft
2	192.50 Ft.	193.00 Ft.	194.00 Ft.	96.25 Ft.	96.50 Ft.	97.00 Ft.
3	194.00 Ft.	195.00 Ft.	197.00 Ft.	64.67 Ft.	65.00 Ft.	65.67 Ft.
4	195.50 Ft.	197.00 Ft.	200.00 Ft.	48.88 Ft.	49.25 Ft.	50.00 Ft.
5	197.00 Ft.	199.00 Ft.	203.00 Ft.	39.40 Ft.	39.80 Ft.	40.60 Ft.
6	198.50 Ft.	201.00 Ft.	206.00 Ft.	33.08 Ft.	33.50 Ft.	34.33 Ft.
7	200.00 Ft.	203.00 Ft.	209.00 Ft.	28.57 Ft.	29.00 Ft.	29.86 Ft.

Corps of Engineers, Jacksonville, Florida

Alternative 3 (Bridge 3)

BEAM SPACING vs. DESIGN SPAN

Checked by: C. Li

STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative-3\[Type E Bridge 3.xls]LENGTH

November 29, 2000

Determine beam spacing and design span:

Bridge Width: 43.08 Ft.

Slab Thickness: 8.00 in.

Number	¹ Beam Spacing		² Design Span									
of Beams		AASHTO Type II	AASHTO Type III	AASHTO Type IV	18" Double T	24" Double T	30" Double T					
4	10.77 Ft.	46.00 Ft.	65.00 Ft.	84.00 Ft.								
5	8.62 Ft.	52.00 Ft.	73.00 Ft.	90.00 Ft.								
6	7.18 Ft.	58.00 Ft.	78.00 Ft.	96.00 Ft.	40.00 Ft.	50.00 Ft.	60.00 Ft.					
7	6.15 Ft.	62.00 Ft.	82.00 Ft.	98.00 Ft.								
8	5.39 Ft.	66.00 Ft.	84.00 Ft.	102.00 Ft.								

¹Beam spacing is based on assuming the cantilever to be half of the beam spacing.

²Design spans are determined from the charts based on the beam spacing given.

Corps of Engineers, Jacksonville, Florida

.

Done by: M. LeComte

Alternative 3 (Bridge

AASHTO BEAMS COMPARISON

Checked by: C. Li

PASTRUCT\Design\Tamiami-Traif\design\cost-analysis\alternative-3\[Type E Bridge 3.xls]LENGTH

November 29, 2000

	1	Adjusted Spa	n				mber of A						
Number		Length		Beams Required									
of	PII	LES	Drilled	Drilled 18" Piles			24" Pile			s Drilled S			
Spans	18 in.	24 in.	Shaft	TI .	ш	IV	П	III	IV	II	III	IV	
2	96.25 Ft.	96.50 Ft.	97.00 Ft.			7							
3	64.67 Ft.	65.00 Ft.	65.67 Ft.	8	4	4	8	4	4	8	5	4	
4	48.88 Ft.	49.25 Ft.	50.00 Ft.	5	4	4	5	4	4	5	4	4	
5	39.40 Ft.	39.80 Ft.	40.60 Ft.	4	4	4	4	4	4	4	4	4	
6	33.08 Ft.	33.50 Ft.	34.33 Ft.	4	4	4	4	4	4	4	4	4	
7	28.57 Ft.	29.00 Ft.	29.86 Ft.	4	4	4	4	4	4	4	4	4	
												\vdash	
										-			

Number	Estimated Construction Cost of AASHTO Beams											
of		18 in. Piles			24 in. Piles		DRILLED SHAFT					
Spans	11	101	IV	II	111	IV	11	Ш	IV			
2	N/A	N/A	\$113,190	N/A	N/A	\$113,484	N/A	N/A	\$114,072			
3	\$83,808	\$51,992	\$65,184	\$84,240	\$52,260	\$65,520	\$85,104	\$65,995	\$66,192			
4	\$52,785	\$52,394	565,688	\$53,190	\$52,796	\$66,192	\$54,000	\$53,600	\$67,200			
5	\$42,552	\$52,796	566,192	\$42,984	\$53,332	\$66,864	\$43,848	\$54,404	\$68,208			
6	\$42,876	\$53,198	\$66,696	\$43,416	\$53,868	\$67,536	544,496	\$55,208	\$69,216			
7	\$43,200	\$53,600	\$67,200	\$43,848	\$54,404	\$68,208	S45,144	\$56,012	\$70,224			

Number		Most Economical AASHTO Beam Type									
of	18*	PILES	24* 1	PILES	DRILLED SHAFT						
Spans	TYPE	COST	TYPE	COST	TYPE	COST					
2	IV	\$113,190	IV	\$113,484	IV	\$114,072					
3	III	\$51,992	Ш	\$52,260	111	\$65,995					
4	III	\$52,394	111	\$52,796	Ш	\$53,600					
5	11	\$42,552	11	\$42,984	TI .	\$43,848					
6	11	\$42,876	[]	\$43,416	tI.	\$44,496					
7	п	\$43,200	п	\$43,848	П	\$45,144					

Corps of Engineers, Jacksonville, Florida

PBS

Done by: M. LeComte

Alternative 3 (Bridge 3)

SUPERSTRUCTURE ALTERNATIVES COMPARISON

Checked by: C. Li

E\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative-3\[Type E Bridge 3.xls]LENGTH

November 29, 2000

Number		AASH	TO BEA	MS WITH	DECK			Flo	rida Doul	ole Tee Bean	ns	
of	18"	PILES	24"	PILES	DRILL	ED SHAF	18" 1	PILES	241	PILES	DRILLE	D SHAF
Spans	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST
2	IV	\$195,562	IV	\$196,070	1V	\$197,086	N/A		N/A		N/A	
3	III	\$135,006	111	\$135,702	111	\$150,293	N/A		N/A		N/A	
4	III	\$136,050	-111	\$137,094	III	\$139,182	FDT24	S252,195	FDT24	\$254,130	FDT24	\$258,000
5	11	\$126,850	II	\$128,138	II	\$130,713	FDT18	\$212,760	FDT18	\$214,920	FDT24	\$261,870
6	11	\$127,816	11	\$129,425	II	\$132,645	FDT18	S214,380	FDT18	\$217,080	FDT18	\$222,480
7	11	\$128,782	11	\$130,713	II	\$134,577	FDT18	\$216,000	FDT18	\$219,240	FDT18	\$225,720
			_									
			-		-							
-	_		-		-		-					
					-		-			-	-	
			-		-			-				
-	-		-									

Deck Reinforcement 205 lbs/CY concrete Cost of Deck per foot \$428/ft.

was a			PRECA	AST SLAB				MOST	ECONOM	ICAL SUPE	ERSTRU	CTURE A	LTERNA'	TIVE	
Number	18*	PILES	24*	PILES	DRILL	ED SHAF		18 in. Pil	e	2	4 in, Pil-	e	30	in. St	aft
of Spans	Thick- ness	Estimated Cost	Thick- ness	Estimated Cost	Thick- ness	Estimated Cost	Number of Beams	Beam Type	Estimated Cost	Number of Beams	Beam Type	Estimated Cost	Number of Beams		Estimated Cost
2	110.10	Con	110110		110,10	Cont	7	IV	\$195,562	7	IV	\$196,070		IV	\$197,086
3							4	111	\$135,006	4	III	\$135,702	5	III	\$150,293
4							4	Ш	\$136,050	4	III	\$137,094	4	III	\$139,182
5	23	\$451,876	23	\$456,464			4	П	\$126,850	4	II	\$128,138	4	11	\$130,713
6	20	\$395,928	20	\$400,914	21	\$431,432	4	II	\$127,816	4	II	\$129,425	4	11	\$132,645
7	18	\$359,028	18	\$364,413	19	\$396,028	4	II	\$128,782	4	II	\$130,713	4	II	\$134,577
		r				A 11	196	en trete				201			

Tamlami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engueers, Jacksonville, Florida

Done by: M. LaConne	Checked by: C. Li	November 29, 2000
Corps of Engineers, Jacksonville, Florida	FOUNDATION LOADS and NUMBER of 18 in. PRESTRESSED PILES 3)	beign Tamiami-Trail/designicasst-emelysis/alternative-Fig1type E Bridge 3.xbjlENOTH
	Altern	HISTRUC

Bridge Width 43.08 Ft.	Nu	Number of lanes	3		Numb	Number of Florida Double Tee = 6
Number of Spans	2 spans	3 spans	4 spans	sands 5	sueds 9	7 spans
Beam Type	2	≡	≡	П	п	E
Beam Weight (k/ft)	0.822 kH	0.583 kH	0.583 kdf	0.384 kdf	0.384 kH	0.384 klf
Number of Beams	7 beams	4 beams	4 beams	4 beams	4 beams	4 beams
Span Length (ft)	96.25 Ft.	64.67 Ft.	48.88 Ft.	39.40 Ft.	33.08 Ft.	28.57 Ft.
Beam Span (ft)	94.25 Ft.	62.67 P.L.	46.88 Ft.	37.40 Ft.	31.08 Ft.	26.57 Ft.
Bridge Deck Thickness (in)	8.00 in.	8.00 in.	8.00 in.	8.00 in.	8.00 in.	8.00 in.
Comp. Loads (ksf)	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf
Barrier Loads (k/ft)(both sides)	0.836 kH	0.836 kH	0.836 kJf	0.836 kdf	0.836 kdf	0.836 MF
Dead Load						
Beam Load (End Bent)		287.0 №	216.9 k	159.2 k	133.7 k	115.4 k
Beam Load (Pier)	1183.7 k	574.0 k	433.8 k	318.4 k	267.3 k	230.9 k
Live Load						
Reduction factor	6.0					
Impact factor for Substructure	1.0					
The state of the s						
LL Reaction per lane (END BENT)						
Truck load	65.0 k	61.6 k	58.3 k	54.9 k	51.7 k	43.5 k
Lane load	56.8 k	46.7 k	41.6 k	38.6 k	36.6 k	35.1 k
Total Live Load (END BINT)	175.5 k	166.3 k	157.3 k	148.3 k	139.6 k	130.9 k
I.I. Reaction per lane (PIER)						
Truck load	66.2 k	63.3 k	60.5 k	57.8 k	55.1 k	52.4 k
Lane load	87.6 k	67.4 k	57.3 k	51.2 k	47.2 k	44.3 k
Total Live Load (PITR)	236.5 k	181.9 %	163.5 k	156.0 k	148.7 k	141.5 k
TetalLoad						
Supersupenire Load (FND RENT)	943.5 k	629.4 k	550.3 k	483.6 k	449.3 ₺	422.4 k
Superstructure Load (PIER)	1478.4 k	814.1 k	655.5 k	532.6 k	474.2 k	430.5 k
Foundation						
	13.0 Ft.					
Service Load Capacity of Piles	147.0 k					
Location of Ext, pile from coping at End Bent/Pier	4.0 Ft.	W	-	4	¥	4
Number of Pilot Remired For PIFR	=	40	· w	4	শ	4
Service Design Load (END BENT)	135 k	126 k	138 k	121 k	112 k	106 k
Service Design Load (PIER)	134 k	136 ₺	131 k	133 k	119 k	108 k

Tamianii Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Copp. of Engineers, Jacksonville, Florida

ži.	
Done by: M. Leun	Checked by: C. Li
	·0

The state of the s	o edino	TAIR INCOME.	Compared a Life interest, processormance, a remove	-				50 0100
Alternative 3 (Bridge	FOUNDATION LOADS and NUMBER of 24 in. PRESTRESSED PILES	LOADS an	d NUMBER	of 24 in.	PRESTRES	SED PILE	S	Checked by: C. Li
FISTRUCT Design/Tamami-Trai	oy PISTRUCT-Designi Tamiami-Traili designi cost analysis' aberradivo-3 (Type E Brulge 3 xis; LENGTH	Type E Bridge 3	KISTENGIH					November 29, 2000
Bridge Width 43.08 Ft.	.08 FL	Nu	Number of lanes			Numbe	Number of Florida Double Tee	ouble Tee = 6
	Number of Spans	2 spans	3 spans	4 spans	S spans	6 spans	7 spans	
	Beam Type	Ν	E	Ξ	п	п	п	
	Beam Weight (k/ft)	0.822 kdf	0.583 kH	0.583 kdf	0.384 kdf	0.384 kH	0.384 kH	
	Number of Beams	7 beams	4 beams	4 beams	4 beams	4 beams	4 beams	
	Span Length (ft)	96.50 Ft.	65.00 Ft.	49.25 Ft.	39.80 Ft.	33.50 Ft.	29.00 Ft.	
	Beam Span (ft)	94.50 Ft.	63.00 Ft.	47.25 FL	37.80 Ft.	31.50 Ft.	27.00 Ft.	
	Bridge Deck Thickness (in)	8.00 in.	8.00 in.	8.00 in.	8.00 in.	8.00 in.	8.00 in.	
	Comp. Loads (ksf)	0.035 ksf	0.035 ksf	0.035 ksf	0 035 ksf	0.035 ksf	0.035 ksf	
Ba	Barrier Loads (k/ft)(both sides)	0.836 kdf	0.836 MF	0.836 kIF	0.836 kH	0.836 Mf	0.836 Mf	
Dead Load								
	Beam Load (End Bent)	593.4 k	288.5 k	218.6 k	160.8 k	135.3 K	117.2 k	
	Beam Load (Picr)	1186.8 k	577.0 k	437.2 k	321.6 k	270.7 k	234.3 k	
Live Load		0						
ī	Impact factor for Substructure	1.0						
LL Reaction per	LL Reaction per lane (END BENT)							
	Truck load	65.0 k	61.7 k	58.4 k	55.1 k	51.9 k	48.8 k	
Total Live Load (END BENT)	END BENT)	20.9 K	166.5 k	157.6 k	148.8 k	140.2 k	131.8 k	
LL Reaction per lane (PTFR)	lane (PTER) Track load	46.38	63.43	1 9 0 9	40.65	45.33	52.7 k	
	Lane load	87.8	67.6 k	57.5 k	51.5 k	47,4 k	44.6 k	
Total Live Load (PIER)		237.0 K	182.5 k	163.7 k	156.4 k	149.3 k	142.3 k	
Total Load	CN39 CN3) has been been been been been been been bee	4 570	4.1.119	46.03	485.7 %	451.715	475.118	
aupric .	Superstructure Load (PIER)	1481.9 k	817.6 k	659.0 k	536.2 k	478.1 k	434.8 k	
Foundation								
	Maximum pile spacing	13.0 Ft.						
<i>S</i> .	Service Load Capacity of Piles	260.0 k						
Number of Pik	Number of Piles Required For END BENT	4	7	*	4	4	7	
Number	Number of Piles Required For PIER	9	4	4	4		4	
Service	Service Design Load (END BENT)	236 k	158 k	138 k	121 %	113 k	106 k	
	Service Design Load (PIER)	247 k	204 k	165 k	134 K	120 K	109 K	

Tamiami Trail Modified Water Deliveries to Everglades National Park Project
Preparation of Engineering Appendix For GRR/SEIS
Corps of Engineers, Jacksurville, Florida
FOUNDATION LOADS on DRILLED SHAFT

Done by: M. LeCome

8

191
7
9
E
3

Corps	Corps of Engineers, Jacksonville		Flotida				Done by the second
Alternative 3 (Bridge FC	UNDATIO	FOUNDATION LOADS on DRILLED SHAFT	on DRILLE	ED SHAFT			Charlest by: C. Li
1.STRUCTIDesign/Teminni-Traifdesign/contant/Stainterrative-3/[Type E Boldge 3 xis LENGTH	Type E Bridge 3	KRILENGTH					November 29, 200
Bridge Width 43.08 Ft.	N	Number of lanes	3		Numbe	er of Florida I	Number of Florida Double Tee = 6
Number of Spans	2 spans	3 spans	4 spans	S spans	6 spans	7 spans	
Beam Type	N	Ш	ш	п	п	=	
Beam Weight (k/ft)	0.822 Mf	0.583 MF	0.583 Mf	0.384 kdf	0.384 kif	0.384 kJf	
Number of Beams	7 белтя	5 beams	4 beams	4 beams	4 beams	4 beams	
Span Length (ft)	97.00 PL	65.67 Ft.	50,00 Pt.	40.60 Ft.	34.33 FL	29.86 Ft.	
Beam Spin (R)	95.00 Ft.	63.67 Ft.	48 00 P.L.	38.60 Ft.	32.33 Ft.	27.86 Ft.	
Bridge Deck Thickness (in)	8.00 in.	8.00 in.	8.00 in.	8.00 in.	8.00 in.	8.00 in.	
Comp. Loads (ksf)	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	
Barrier Loads (Joft)(both sides)	0.836 kJf	0.836 kH	0.836 kif	0.836 Mf	0.836 kJf	0.836 kH	
Dead Load							
Beam Load (End Bern)	596.5 k	310.6 k	221.9 k	164.0 k	138.7 k	120.6 k	
Beam Load (Pier)	1192.9 k	621,2 k	443.8 k	328.1 k	277,4 k	241.3 k	
Local Local							
Live Load Reduction factor	6.0						
Impact factor for Substructure	1.0						
II. Reaction per lane (END BENT)							
Truck load	65.1 k	61.8 k	58.6 k	55.4 k	52.4 k	49.5 k	
Lane load	57.0 k	47.0 k	42.0 k	39.0 k	37.0 k	35.6 k	
Total Live Load (FND BENT)	. 175,7 k	166.8 k	158.1 k	149.7 k	141.6 k	133.6 k	
LL Reaction per lane (PIER)							
: :	-	63.5 k	80.8 k	58.2 k	55.7 k	53.2 k	
Total First and (PIER)	237.8 k	58.0 k	28.0 K	32.0 K	150.4 k	143.8 k	
Tetal Load	41 220	15 (89	46 585	418 0 15	485.5 k	459.4 k	
Superpotential and CHERO		882.4 %	685.51	562.8 k	505.3 k	462.6 k	
Annual Control of the							
	11 + 1						
Foundation Maximum pile spacing	16.0 Ft.						
Location of Ext. shaft from coping at End Bent	9	,	,	,	,	٠	
Number of Piles Required For END BENT Number of Piles Demised For DIED	יים ר	m c	n c	n 14	2 5	9 (4	
Service Design Load (END BENT)	326 k	228 k	195 k	173 k	162 k	183 k	
Service Design Load (PIER)	754 K	411	343 k	281 k	253 k	231 k	

Corps of Engineers, Jacksonville, Florida

1,R2%

Done by: M. LeComte

Alternative 3 (Bridge 3)

INTERMEDIATE BENTS / PIERS

Checked by: C. Li

\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative-3\[Type B Bridge 3.xls]LENGTH

November 29, 2000

Pier Section (2 Drilled Shafts)

Foundation Type	18 in. Pile	24 in. Pile	36 in. Shaft
Estimated Pile Embedment Length	19 ft.	19 ft.	14 ft.
Pile Length Above Ground	8 ft.	8 ft.	8 ft.
Total Length of Pile	27 ft.	27 ft.	22 ft.
Estimated Cost of One Pile/Drilled Shaft	\$891	\$1,242	\$4,840
Bent cap cross sectional area	9.0 sq.ft	9.0 sq.ft	12.0 sq.ft
Bent Cap Length	43 ft.	43 ft.	43 ft.
Total Concrete Volume	14.4 CY	14.4 CY	19.1 CY
Reinforcement at 145 lbs/CY	2082 lbs	2082 lbs	2776 lbs
Estimated Cost of Bent Cap	\$6,897	\$6,897	\$9,196

PRESTRESSED PILES	18 in.	24 in.	DRILLED SHAFT	36 in.
Number of test loads per bridge	2 ca.	2 ea.	Number of test loads per bridge	1 ea.
			Core (Shaft Excavation)	
			Length of temporary casing	
Est, total cost of test piles w/ dynamic load test per bridge	\$13,440	\$13,440	% of casing splice	-
			Excavation, unclassified shaft	
% of pile splice	10%	10%	Drilled shaft sidewall overreaming	
% of pile hole preformed	100%	100%	Excavation, unclassified extra depth	

Number of	Number o Requir		Number of Drilled Shafts	5.55	st of Piles nt / Pier	Total Cost of Drilled Shaft	Tot	al Estimated of ONE Pic	
Spans	18 in.	24 in.	36 in.	18* Pile	24" Pile	per Pier	18" Pile	24" Pile	36" Shaft
2	11	6	2	\$25,562	\$22,194	\$59,680	\$32,459	\$29,091	\$68,876
3	6	4	2	\$13,332	\$12,556	\$34,680	\$20,229	\$19,453	\$43,876
4	5	4	2	\$9,990	\$10,316	\$26,347	\$16,887	\$17,213	\$35,543
5	4	4	2	\$7,768	\$9,196	\$22,180	\$14,665	\$16,093	\$31,376
6	4	4	2	\$7,096	\$8,524	\$19,680	\$13,993	\$15,421	S28,876
7	4	4	2	\$6,648	\$8,076	\$18,013	\$13,545	\$14,973	\$27,209

Corps of Engineers, Jacksonville, Florida

Alternative 3 (Bridge

END BENTS

Checked by: C. Li

:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative-3\{Type E Bridge 3.xls}LENGTH

November 29, 2000

	Foundation Type	18 in. Pile	24 in. Pile	36 in. Shaft
Estimated	Pile Embedment Length	19 ft.	19 ft.	14 ft.
Pi	le Length Above Ground	8 ft.	8 ft.	8 ft.
	Total Length of Pile	27 ft.	27 ft.	22 ft.
Estimated Cost	of One-Pile/Drilled-Shaft	\$891	\$1,242	\$4,840
Ben	t cap cross sectional area	7.5 sq.ft	7.5 sq.ft	12.0 sq.ft
	Bent Cap Length	43 ft.	43 ft.	43 ft.
	Total Concrete Volume	12.0 CY	12.0 CY	19.1 CY
Reinforcement at	145 lbs/CY	1735 lbs	1735 lbs	2776 lbs
F	stimated Cost of Bent Cap	\$5,747	\$5,747	\$9,196

PRESTRESSED PILES	18 in.	24 in.	DRILLED SHAFTS	36 in.
			Core(Shaft Excavation)	
			Length of temporary casing	
			Percentage of casing splice	
			Excavation, unclassified shaft	
% of pile splice	10%	10%	Drilled shaft sidewall overreaming	
% Pile hole preformed	100%	100%	xcavation, unclassified extra depth	

Number	Numbe	er of Piles	Number of	Total Co	st of Piles	Total Cost of	То	tal Estimated	Cost
of	Req	quired ¹	Drilled Shafts ²	per Be	nt / Pier	Drilled Shaft		of ONE Pie	r
Spans	18 in.	24 in.	36 in.	18" Pile	24" Pile	per Pier	18" Pile	24* Pile	36" Shaft
2	9	6	5	\$9,918	\$8,754	\$24,200	\$29,053	\$27,889	\$46,783
3	7	6	5	\$7,714	\$8,754	\$24,200	\$24,181	\$25,221	\$44,115
4	6	6	5	\$6,612	\$8,754	\$24,200	\$23,079	\$25,221	\$44,115
5	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	\$22,794	\$41,688
6	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	\$22,794	\$41,688
7	6	6	5	\$6,612	\$8,754	\$24,200	\$20,652	\$22,794	\$41,688
			P	V 14-0 5 1-		F=1 == 1 == 1	*****	*	

¹Includes wingwall piles for Type IV, III, II beams.

²Includes wingwall drilled shafts for Type IV, III, II beams.

Corps of Engineers, Jacksonville, Florida

SUBSTRUCTURE & SUPERSTRUCTURE ALTERNATIVES COMPARISON

Checked by: C. Li

:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative-3\[Type E Bridge 3.xls[LENGTH

Alternative 3 (Bridge

November 29, 2000

Number	ADJU	ISTED SPAN	LENGTH	Number		ost of Substruc	ture	Cor	st of Superstru	cture	Total Cost of Structure				
of	18 in.	24 in.	36 in.	of	18 in.	24 in.	36 in.	18 in.	24 in.	36 in.	18 in.	24 in.	36 in.		
Spans	Pile	Pile	Shaft	Piers	Pile	Pile	Shaft	Pile	Pile	Shaft	Pile	Pile	Shaft		
2	96.25 Ft.	96.50 Ft.	97.00 Ft.	1	\$90,565	\$84,869	S162,443	\$195,562	\$196,070	\$197,086	\$286,127	\$280,939	\$359,529		
3	64.67 Ft.	65.00 Ft.	65.67 Ft.		and the second of the second o	\$135,006	\$135,702	\$150,293	\$223,825	\$225,049	\$326,275				
4	48.88 Ft.	49.25 Ft.	50.00 Ft.	Pt. 3 \$96,818 \$102,080 \$194,858 \$	\$136,050	,050 \$137,094 \$139	\$139,182	\$232,868	\$239,174	\$334,040					
5	39.40 Ft.	39.80 Ft.	40.60 Ft.	4	\$99,963 \$109,959 \$208,880			0 \$126,850 \$128,138	\$130,713	\$226,813	\$238,097	\$339,593			
6	33.08 Ft.	33.50 Ft.	34.33 Ft.	5	S111,268 S122,692 S227,756			\$127,816	\$129,425	\$132,645	\$239,084	\$252,117	\$360,401		
7	28.57 Ft.	29.00 Ft.	29.86 Ft.	6	S122,573	\$135,425	S246,632	S128,782	\$130,713	\$134,577	\$251,354	\$266,138	\$381,208		

SUMMARY OF MOST ECONOMICAL ALTERNATIVES FOR EACH SPAN ARRANGEMENT:

Number of Spans	Estimated Cost	Foundation Alternative	Superstructure Alternative	Number of Spans	Number of Beams	Number of Piles or Drilled Shafts	Total Length of Piles or Drilled Shafts	Number of Test Piles	Total Length of Test Piles
2	\$280,939	24 in.	Type IV	2	7	16	432 ft	2	84 ft
3	\$223,825	18 in.	Type III	3	4	24	648 ft	2	84 ft
4	\$232,868	18 in.	Type III	4	4	25	675 ft	2	84 ft
5	\$226,813	18 in.	Type II	5	4	26	702 ft	2	84 ft
6	\$239,084	18 in.	Type II	6	4	30	810 n	2	84 ft
7	\$251,354	18 in.	Type II	7	4	34	918 ft	2	84 ft

S223,825 <--- Minimum

RESULT OF COST COMPARISON STUDY:

Most economical superstructure type: Type III

Most economical substructure type: 18 in.

Optimum Span Arrangement: 3 spans at 64.67 FT.

Total bridge length: 194.00 Ft.

Total number of beams: 12

Total length of beams: 776.00 Ft.

Number of piles or drilled Shafts: 24

Length of Piles or drilled Shafts: 648.00 Ft.

Corps of Engineers, Jacksonville, Florida

Done by: M. LeComte

Checked by: C. Li

Alternative 3 (Bridge 3)

ESTIMATE OF PROBABLE CONSTRUCTION COSTS

:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative-3\[Type B Bridge 3.xls]LENGTH

November 29, 2000

Item	Quantity	Units	Unit Price	Amount
SUPERSTRUCTURE:				
Concrete	206.5	CY	S310	\$64,008
Reinforcing Steel ¹	42328	LBS	S0.45	\$19,048
Bridge Floor Grooving	862	SY	\$2.50	\$2,156
Traffic Railing Barrier	388.0	FT	\$35	\$13,580
Expansion Joints ³	86.2	FT	\$84	\$7,238
Type III Beam	776.0	FT	\$67	\$51,992
Neoprene Bearing Pads	0.094	CY	\$425	\$40
respecte bearing rass	0.074	•	4.25	4.10
		Superstr	ucture Subtotal	\$158,061
SUBSTRUCTURE:				
Concrete	97.1	CY	\$415	\$40,292
Reinforcing Steel ²	14078	LBS	\$0.45	\$6,335
Pile Hole, Preformed	24	EA	\$200	\$4,800
Test Piles	84	Ft.	S160	\$13,440
18 in. Prestressed Concrete Piles (F & I)	648	Ft.	S33	\$21,384
Pile Splices	3	EA	\$110	\$330
Drilled shaft		LF	\$220	
Test load for drilled shaft		EA	\$50,000	
Core (Shaft Excavation)		LF		
Temporary casing		LF		
Casing splice		EA		
Excavation, unclassified shaft		LF		
Drilled shaft sidewall overreaming		LF LF		
Excavation, unclassified extra depth		LF		
		Substr	ucture Subtotal	\$86,581
		Constructio	n Cost Subtotal	\$244,642
Mobilization (5% of Construction Cost)	1	LS		\$ 12,232
Contingency (15% of Construction Cost)	1	LS	S H 1 SS 8 8 1 - 1	\$ 36,696
	T	otal Cons	truction Cost	\$293,571
		Deck Sous	re Footage (Ft.)	8,358
			Square Foot	\$35.12/sf

¹Ratio of reinforcement to superstructure concrete:

205 Lbs/CY.

²Ratio of reinforcement to substructure concrete:

145 Lbs/CY.

³Number of expansion piers:

2

Corps of Engineers, Jacksonville, Florida

Done by: M. LeComte

Alternative 3 (Bridge 4)

BRIDGE AND SPAN LENGTHS

Checked by: C. Li

\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative-3\[Type F Bridge 4.xls]COST

November 29, 2000

Determine Bridge Length based on hydraulic opening:

125.00 Ft. Hydraulic Opening Width at Natural Ground Level

Natural Ground Elevation

5.00 Ft.

Control Water Elevation

8.50 Ft.

Minimum Clearance over Control Water Elevation 6.00 Ft. Berm Width

3.00 Ft.

Vertical Distance from bottom of beams to top of Berm where slope starts

2.25 Ft.

2.00 Ft.

Distance From FFBW to Front Edge of End Bent Cap

Minimum Span length

28.00 Ft.

Preliminary Bridge Length (No adjustment due to pile/drilled shaft in the opening), L' =

164.00 Ft.

Number of	ADJUS	TED BRIDGE LI	ENGTH (L)	ADJ	USTED SP.	AN LENGTH
Spans	18 in. Pile	24 in. Pile	36 in. Drilled Shaft	18 in. Pile	24 in. Pile	36 in. Drilled Shaft
2	165.50 Ft.	166.00 Ft.	167.00 Ft.	82.75 Ft.	83.00 Ft.	83.50 Ft.
3	167.00 Ft.	168.00 Ft.	170.00 Ft.	55.67 Ft.	56.00 Ft.	56.67 Ft.
4	168.50 Ft.	170.00 Ft.	173.00 Ft.	42.13 Ft.	42.50 Ft.	43.25 Ft.
5	170.00 Ft.	172.00 Ft.		34.00 Ft.	34.40 Ft.	35.20 Ft.
6	171.50 Ft.	174.00 Ft.	179.00 Ft.	28.58 Ft.	29.00 Ft.	29.83 Ft.

Corps of Engineers, Jacksonville, Florida

Done by: M. LeComi

Alternative 3 (Bridge 4)

BEAM SPACING vs. DESIGN SPAN

\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative-3\fType F Bridge 4.xls\COST

November 29, 2000

Checked by: C. Li

Determine beam spacing and design span:

Bridge Width: 35.08 Ft. Slab Thickness: 8.00 in.

Number	¹ Beam			² Design Sp	an		
of Beams	Spacing	AASHTO Type II	AASHTO Type III	AASHTO Type IV	18" Double T	24" Double T	30* Double T
4	8.77 Ft.	46.00 Ft.	65.00 Ft.	84.00 Ft.			
5	7.02 Ft.	52.00 Ft.	73.00 Ft.	90.00 Ft.			
6	5.85 Ft.	58.00 Ft.	78.00 Ft.	96.00 Ft.	40.00 Ft.	50.00 Ft.	60.00 Ft.
7	5.01 Ft.	62.00 Ft.	82.00 Ft.	98.00 Ft.			
8	4.39 Ft.	66.00 Ft.	84.00 Ft.	102.00 Ft.			

¹Beam spacing is based on assuming the cantilever to be half of the beam spacing.

²Design spans are determined from the charts based on the beam spacing given.

Corps of Engineers, Jacksonville, Florida

AASHTO BEAMS COMPARISON

:\STRUCT\Design\Tamiami-TraiPdesign\cost-analysis\alternative-3\fType F Bridge 4.xls)COST

Alternative 3 (Bridge

4)

Done by: M. LeComte

Checked by: C. Li

November 29, 2000

Number	/	Adjusted Spa Length	n				mber of A Beams Rec						
of	PII	.ES	Drilled		18" Piles			24" Piles		Dri	lled S	haft	
Spans	18 in, 24 in, Shaft 82.75 Ft. 83.00 Ft. 83.50 Ft.		11	ш	IV	п	III	IV	11	Ш	IV		
2	82.75 Ft.	5.67 Ft. 56.00 Ft. 56.67 Ft. 2.13 Ft. 42.50 Ft. 43.25 Ft. 4.00 Ft. 34.40 Ft. 35.20 Ft.		8	4		8	4		8	4		
3	55.67 Ft.		6	4	4	6	4	4	6	4	4		
4	42.13 Ft.			4	4	4	4	4	4	-			
5	34.00 Ft.		4	4	4	4	4	4	4		4		
6	28.58 Ft.	29.00 Ft.	29.83 Ft.	4	4	4	4	4	4	4	4	4	

				Constructi SHTO Bea				
	18 in. Piles	11000000	1	24 in. Piles	0.000	DR	ILLED SH	AFT
II	III	IV	п	III	IV	II	m	IV
N/A	\$88,708	\$55,608	N/A	\$88,976	\$55,776	N/A	\$89,512	\$56,112
\$54,108	\$44,756	\$56,112	\$54,432	\$45,024	\$56,448	\$55,080	\$45,560	\$57,120
\$36,396	\$45,158	\$56,616	\$36,720	\$45,560	\$57,120	\$37,368	\$46,364	\$58,128
S36,720	\$45,560	\$57,120	\$37,152	\$46,096	\$57,792	\$38,016	\$47,168	\$59,136
\$37,044	S45,962	557,624	\$37,584	\$46,632	S58,464	\$38,664	\$47,972	S60,144
						-		
	N/A \$54,108 \$36,396	III	II III IV N/A \$88,708 \$55,608 \$54,108 \$44,756 \$56,112 \$36,396 \$45,158 \$56,616 \$36,720 \$45,560 \$57,120	18 in. Piles	18 in. Piles 24 in. Piles 11	18 in, Piles 24 in, Piles 111 IV II III IV IV IV	18 in, Piles 24 in, Piles DR	18 in. Piles

Number		Mos	Economic Beam	al AASHTO Type)	
of	. 18" 1	PILES	24" I	TLES	DRILLE	D SHAFT
Spans	TYPE	COST	TYPE	COST	TYPE	COST
2	IV	\$55,608	IV	\$55,776	IV	\$56,112
3	III	\$44,756	Ш	\$45,024	III	\$45,560
4	II	\$36,396	[]	\$36,720	П	\$37,368
5	II	\$36,720	11	S37,152	II	\$38,016
6	II	\$37,044	п	\$37,584	II	\$38,664
		b				

Corps of Engineers, Jacksonville, Florida

Alternative 3 (Bridge

SUPERSTRUCTURE ALTERNATIVES COMPARISON

Checked by: C. Li

1:\STRUCT\Design\Tamiami-Trait\design\cost-analysis\alternative-3\{Type F Bridge 4.xls}COST

November 29, 2000

Number		AASH	TO BEA	MS WITH	DECK			Flo	rida Doul	ble Tee Bean	ns			
of	18*	PILES	24*	PILES	DRILL	ED SHAF	18" F	PILES	24"	PILES	DRILLI	ED SHAF		
Spans	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST	TYPE	COST		
2	IV	\$113,277	IV	\$113,619	IV	\$114,303	N/A		N/A		N/A			
3	III	\$102,947	III	\$103,564	III	\$104,797	FDT30	\$250,500	0 FDT30 \$252,000		FDT30	\$255,000		
4	II	\$95,110	II	\$95,957	. II	\$97,650	FDT24	\$217,365	FDT24	\$219,300	FDT24	\$223,170		
5	II	\$95,957	II	\$97,086	II	\$99,343	-	\$183,600	FDT18	\$185,760	FDT18	\$190,080		
6	II					\$101,037						FDT18 \$193,320		

Deck Reinforcement 205 lbs/CY concrete Cost of Deck per foot \$348/ft.

		Meson some m	PREC	AST SLAB				MOST	ECONOM	ICAL SUPE	ERSTRU	CTURE A	LTERNA'	TIVE	
Number	18'	PILES	24*	PILES	DRILL	ED SHAF		18 in. Pil	e	2	4 in. Pil	e	CATALOGICA CONTRACTOR OF THE SECOND	5 in. St	
of Spans	Thick- ness	Estimated Cost	Thick- ness	Estimated Cost	Thick- ness	Estimated Cost	Number of Beams	Beam Type	Estimated Cost	Number of Beams	Beam Type	Estimated Cost	Number of Beams		Estimated Cost
2							4	IV	\$113,277	4	IV	\$113,619	4	IV	\$114,303
3							4	111	\$102,947	4	111	\$103,564	4	III	\$104,797
4							4	11	\$95,110	4	II	\$95,957	4	II	\$97,650
5	21	\$289,925	21	\$293,336	21	\$300,157	4	11	\$95,957	4	II	\$97,086	4	II	\$99,343
6	18	\$250,700	18	\$254,354	19	\$276,200	4	II.	\$96,803	4	II	\$98,214	4	II	\$101,037
			12 4	W		plant of the first	Mr. v. Santa		#+4 ÷	at at a second		• p-			

Tumiani Trail Modified Water Deliveries to Everglades National Park Project
Preparation of Engineering Appendix For GRR/SEIS
Copps of Engineers, Jacksonville, Florida

FOUNDATION LOADS and NUMBER of 18 in. PRESTRESSED PILES

Alternative 3 (Bridge

STRUCTIDe in of Teninal Trail designicon analyzis alternative NiType F Bridge 4 xts (COST

Done by: M. LoComic

Obeshed by: C. Li November 29, 2000

Bridge Width 35.08 Ft.	S.	Number of lanes	-		Number of Florida Double Tee = 5	
Number of Spans	2 spans	3 spans	4 spans	5 spans	6 spans	
Beam Type	Ν	Ε	=	п	п	
Beam Weight (kft)	0.822 kH	0.583 kIf	0.384 kHf	0.384 Mf	0.384 kif	
Number of Beams	4 beams	4 beams	4 beams	4 heams	4 beans	
Span Length (ft)	82.75 Ft.	55.67 Ft.	42,13 Pt.	34.00 Ft.	28.58 Ft.	
Beam Span (ft)	80.75 Ft.	53.67 Ft.	40.13 FL	32.00 Ft.	26.58 Ft.	
Bridge Dock Thickness (in)	8.00 in.	8.00 in	8.00 in.	8.00 in.	8.00 in.	
Comp. Loads (ksf)	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	0.035 ksf	
Barrier Loads (k/ft)(both sides)	0.836 kJf	0.836 kH	0.836 kJf	0.836 kdf	0.836 kJf	
Dead Load	100	;	:		7 4 4 4 4 4	
Beam Load (End Bent)	-	217.0 K	147.4 K	119.0 K	100.0 K	
Beam Load (Pict)	724.3 K	434.0 k	294.9 k	258.0 K	230.1 K	
Live Load Reduction factor Impact factor for Soldstructure	1.0					
11. Reaction per Jane (END BENT)						
Truck load	63.9 k	¥ 6.65	56.0 k	52.2 k	48.5 k	
Lanc load	52.5 k	43.8 k	39.5 k	36.9 k	35.1 k	
Total Live Load (END BENT)	127.8 k	119.9 k	112.1 k	104.5 k	97.0 k	
LL Reaction per lane (PIER)		1019	2	3	4.50	
Luck load		× 5.0	20.7 K	40.00		
Labe load (PLER)	19.0 k	61.6 K 123.9 K	35.0 K 117.4 k	47.8 K	104.8 k	
Total Load (Superstructure Load (END BENT)	633.3 k	480.3 k	402.9 k	366.9 k	3.40.45	
Superstructure Load (PIER)	929.5 k	605.2 k	459.7 k	396.4 k	352.3 k	
Foundation						
	13.0 Ft.					
Service Load Capacity of Piles	147.0 k					
Location of taxt, pire from coping at and both risk Number of Piles Required For END BENT	3 0	+	4	4	v	
Number of Piles Required For PIFR	7	9	च	4	*	
Service Design Load (END BENT)	127 k	120 k	101 k	92 k	85 k	
Service Design Load (PIER)	. 133 k	121 %	115 k	3 K	88 k	

Famismi Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Horida

PBS

Done by: M. LeComp.

November 29, 2000 Checked by: C. Li Number of Florida Double Tee - 5 FOUNDATION LOADS and NUMBER of 24 in. PRESTRESSED PILES 0.035 ksf 101.5 k 203.0 k 0.836 kHr 342.6 k 355.8 k 0.384 kif 29.00 Ft. 48.8 k 35.3 k 97.7 k 52.7 k 44.6 k 105.4 k 27.00 Ft. 4 beams 8.00 in. 6 spans 4 4 88 k 89 k Ħ 0.035 ksf 0.836 kdf 120.4 k 240.8 k 368.7 k 399.6 k 0.384 MF 34.40 FL 52.5 k 37.0 k 104.9 k 55.7 k 48.0 k 111.4 k 4 hearns 32.40 Ft. 8.00 in. 5 spans Ħ 404.5 k 462.5 k 0.384 kJf 42.50 Pt. 0.035 ksf 0.836 kH 148.8 k 297.5 k 56.2 k 39.6 k 112.4 k 58.8 k 53.2 k 117.6 k 4 101 k 116 k 40.50 Pt. 8.00 in. 4 beams 4 spans Number of lanes 0.035 ksf 481.7 k 608.0 k 56.00 Ft. 218.3 k 436.6 k 62.0 k 61.8 k 124.0 k 3 spans 0.583 kIf 54.00 Ft. 0.836 kH 43.9 k 120.0 k 4 120 k 152 k 8.00 in. 4 beams 80.0k Ε analysis/abernative-3/(Type F Bridge 4.xts/COST 0.035 ksf 0.836 kH 81.00 Ft. 8.00 in. 363.2 k 726.4 k 65.3 k 79.1 k 158.2 k 634,4 k 932.0 k 13.0 Ft. 260.0 k 4.0 Ft. 0.822 kif 4 beams 83.00 Ft. 63.9 k 52.6 k 127.8 k 2 spans 159 k 233 k 2 Impact factor for Substructure Reduction factor Truck load Lane load Superstructure Load (END BENT)
Superstructure Load (PIER) Number of Spans Beam Span (ft) Barrier Loads (k/ft)(both sides) Maximum pile spacing
Service Load Capacity of Piles
Location of Ext. pile from coping at End Bent/Pier Beam Weight (le/ft) Number of Beams Span Length (ft) Bridge Deck Thickness (in) Comp. Loads (ksf) Beam Load (Find Bent) Beam Load (Pier) Service Design Load (PIER) Beam Type Truck load Lanc load Number of Piles Required For PHER Service Design Load (END BENT) Number of Piles Required For END BENT LL Reaction per lane (END BENT) Total Live Load (END BENT) LL Reaction per lane (PTFR) Bridge Width 35.08 Ft. Total Live Load (PIER) Alternative 3 (Bridge STRUCT Design Ta Foundation Total Load Dead Load Live Load

Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/NEIS Course of Engineers, Jacksooville, Florida	ater Deliver Engineering Cingineers	lifted Water Deliveries to Everglades Na stion of Engineering Appendix For GKR Corps of Engineers, Jacksopville, Florida	es National I GRR/SEIS orida	Park Project		PBSJ Dure by: M. LeConne
Alternative 3 (Bridge FO	UNDATE	FOUNDATION LOADS on DRILLED SHAFT	n DRILLE	D SHAFT		Checked by: C. 13
LSTRUCT Decign Tambani-Traffylorips/cost-malysk/alternative 5/(Type F Bridge 4.1b)COST	Ope F Bridge 4	*k)COST				November 29, 20
	für.					
Bridge Width 35.08 Ft.	N	Number of lanes	7		Number of Florida Double Tee	Double Tee = 5
Number of Spans	2 spans	3 spans	4 spans	S spans	surds 9	
Beam Type Beam Weight (A.M.)	N CCS 0	III 0 583 MF	11 0.384 kH	0.384 kif	0.384 kif	
from a Sign at the Color						
Number of Beams	4 beams	4 beams	4 beams	4 beams	4 beams	
Span Length (#) Beam Span (#)	83.50 R. 81.50 R.	56.67 FL 54.67 FL	41.25 R.	33.20 FL	27.83 FL	
	500	.5	.1	e 00 in	.i. 000 8	
Dringe Leeus Tracks (m)	0.035 kef	0.035 ksf	0.035 ksf	0.035 ksf	0,035 ksf	
Barrier Loads (K/ft)(both sides)	0.836 kIF	0.836 kdf	0.836 kif	0.836 kIF	0.836 kJf	
Dead Load Beam Load (End Bent) Beam Load (Pier)	365.4 k 730.8 k	220.9 k 441.8 k	151.4 k 302.8 k	123.2 k 246.4 k	104.4 k 208.8 k	
Live Load Reduction factor Impact factor for Substructure	01					
LL Reaction per lane (END BENT) Inck load Lane load Tool Lies I and JENTA	64.0 k 52.7 k	60.1 k 44.1 k 120.3 k	56.5 k 39.8 k 112.9 k	52.9 k 37.3 k 105 8 k	4 5 5 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5	
form of the proof and prof						
1.1. Reaction per lane (PIER) Truck load Total Live Load (PIER)	65.3 k 79.4 k 158.9 k	62.1 k 62.3 k 124.5 k	59.1 k 53.7 k 118.1 k	56.1 k 48.5 k 112.2 k	53.2 k 45.1 k 106.5 k	
Total Load Superstructure Load (FND RENT) Superstructure Load (FHER)	660.4 k 952.9 k	508.3 k 629.5 k	431.4 k 481.0 k	396.1 k 421.7 k	370.5 k 378.5 k	
Eoundation Location of Ext. shaft from coping at Find Bent Number of Piles Required For HND BENT Number of Piles Required For PIER Service Design Load (END BENT) Service Design Load (FIER)	16.0 Ft. 6.0 Ft. 3 2230 k 476 k	3 2 169 k 315 k	3 144 k 242 k	3.2 k 2.1 k	3 2 123 k 189 k	

Corps of Engineers, Jacksonville, Florida

Alternative 3 (Bridge 4)

INTERMEDIATE BENTS / PIERS

:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative-3\[Type F Bridge 4.xls]COST

November 29, 2000

Checked by: C. Li

Intermediate Bent Section Pier Section (2 Drilled Shafts)

Foundation Type	18 in. Pile	24 in. Pile	36 in. Shaft
Estimated Pile Embedment Length	19 ft.	19 ft.	14 ft.
Pile Length Above Ground	8 ft.	8 ft.	8 ft.
Total Length of Pile	27 ft.	27 ft.	22 ft.
Estimated Cost of One Pile/Drilled Shaft	\$891	\$1,242	\$4,840
Bent cap cross sectional area	9.0 sq.ft	9.0 sq.ft	12.0 sq.ft
Bent Cap Length	35 ft.	35 ft.	35 ft.
Total Concrete Volume	11.7 CY	11.7 CY	15.6 CY
Reinforcement at 145 lbs/CY	1696 lbs	1696 lbs	2261 lbs
Estimated Cost of Bent Cap	\$5,616	\$5,616	\$7,488

PRESTRESSED PILES	18 in.	24 in.	DRILLED SHAFT	36 in.
Number of test loads per bridge	2 ea.	2 ea.	Number of test loads per bridge	1 ea.
			Core (Shaft Excavation)	
			Length of temporary casing	
Est. total cost of test piles w/ dynamic load test per bridge	\$13,440	\$13,440	% of casing splice	
			Excavation, unclassified shaft	
% of pile splice	10%	10%	Drilled shaft sidewall overreaming	
% of pile hole preformed	100%	100%	Excavation, unclassified extra depth	

Number	Number o		Number of Drilled Shafts	2.526	ost of Piles ent / Pier	Total Cost of Drilled Shaft	To	al Estimated	
Spans	18 in.	24 in.	36 in.	18" Pile	24" Pile	per Pier	18" Pile	24" Pile	36" Shafi
2	7	4	2	S21,154	\$19,276	\$59,680	\$26,770	\$24,892	\$67,168
3	5	4	2	\$12,230	\$12,556	\$34,680	\$17,846	\$18,172	\$42,168
4	4	4	2****	\$8,888	\$10,316	S26,347	\$14,504	\$15,932	\$33,835
5	4	4	2	\$7,768	\$9,196	\$22,180	\$13,384	\$14,812	\$29,668
6	4	4	2	\$7,096	\$8,524	\$19,680	\$12,712	\$14,140	\$27,168
			V						

Corps of Engineers, Jacksonville, Florida

PBS)

Done by: M. LeCont

Checked by: C. Li

November 29, 2000

Alternative 3 (Bridge

END BENTS

:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative-3\[Type F Bridge 4.xls]COST

Foundation Type 18 in. Pile 24 in. Pile 36 in. Shaft Estimated Pile Embedment Length 19 ft. 19 ft. 14 ft. Pile Length Above Ground 8 ft. 8 ft. 8 ft. Total Length of Pile 27 ft. 27 ft. 22 ft. - Estimated Cost of One Pile/Drilled Shaft \$891 \$1,242 \$4,840 Bent cap cross sectional area 7.5 sq.ft 7.5 sq.ft 12.0 sq.ft Bent Cap Length 35 ft. 35 ft. 35 ft. 9.7 CY Total Concrete Volume 9.7 CY 15.6 CY 1413 lbs 1413 lbs 2261 lbs Reinforcement at 145 lbs/CY \$7,488 Estimated Cost of Bent Cap \$4,680 \$4,680

PRESTRESSED PILES	18 in.	24 in.	DRILLED SHAFTS	36 in.
			Core(Shaft Excavation)	
			Length of temporary casing	
			Percentage of casing splice	
			Excavation, unclassified shaft	
% of pile splice	10%	10%	Drilled shaft sidewall overreaming	
% Pile hole preformed	100 %	100%	xcavation, unclassified extra depth	le serie

Number	Numbe	r of Piles	Number of	Total Co	st of Piles	Total Cost of	To	tal Estimated	
of	Rec	juired ¹	Drilled Shafts2	per Be	nt / Pier	Drilled Shaft		of ONE Pie	r
Spans	18 in.	24 in.	36 in.	18" Pile	24" Pile	per Pier	18" Pile	24" Pile	36" Shaf
2	7	6	5	\$7,714	\$8,754	\$24,200	\$25,103	\$26,143	\$44,397
3	6	6	5	\$6,612	\$8,754	\$24,200	\$21,440	\$23,582	\$41,836
4	6	6	5	\$6,612	\$8,754	\$24,200	\$19,120	\$21,262	\$39,516
5	6	6	5	\$6,612	\$8,754	\$24,200	\$19,120	\$21,262	\$39,516
6	6	6	5	\$6,612	\$8,754	\$24,200	\$19,120	S21,262	\$39,516
		Park The	V=0.00	e 96 - 161 -	e e como de la	- 140-1		et	

¹Includes wingwall piles for Type IV, III, II beams.

²Includes wingwall drilled shafts for Type IV, III, II beams.

Corps of Engineers, Jacksonvitle, Florida

Alternative 3 (Bridge

SUBSTRUCTURE & SUPERSTRUCTURE ALTERNATIVES COMPARISON

Checked by: C. Li

STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative-3\dType P Bridge 4.xls|COST

November 29, 2000

18 in. Pite	24 in.	26 1			ost of Substruc	tute	Co	st of Superstru	cinc	Total	Cost of Str	ucture
Pile		36 in.	of	18 in.	24 in.	36 in.	18 in.	24 in.	36 in.	18 in.	24 in.	36 in.
2 110	Pile	Shaft	Piers	Pile	Pile	Shaft	Pile	Pile	Shaft	Pile	Pile	Shaft
2.75 Ft.	83.00 Ft.	83.50 Ft.	1	\$76,976	\$77,178	\$155,962	S113,277	\$113,619	\$114,303	\$190,252	\$190,796	\$270,265
55.67 Ft.	56.00 Ft.	56.67 Ft.	2	\$78,572	\$83,508	\$168,008	\$102,947	\$103,564	\$104,797	\$181,519	\$187,072	\$272,805
12.13 Ft.	42.50 Ft.	43.25 Ft.	3	\$81,752	\$90,320	\$180,537	\$95,110	\$95,957	\$97,650	\$176,862	\$186,277	\$278,187
14.00 Ft.	34.40 Ft.	35.20 Ft.	4	\$91,777	\$101,773	\$197,705	\$95,957	\$97,086	\$99,343	\$187,733	\$198,858	\$297,049
28.58 Fc.	29:00 Ft.	29:83 Ft.	5	\$101,801	"S113,225	\$214,874	\$96,803	\$98,214	\$101,037	\$198,604	\$211,439	\$315,910
12	5.67 Ft. 2.13 Ft. 4.00 Ft.	5.67 Ft. 56.00 Ft. 2.13 Ft. 42.50 Ft. 4.00 Ft. 34.40 Ft.	5.67 Ft. 56.00 Ft. 56.67 Ft. 2.13 Ft. 42.50 Ft. 43.25 Ft. 4.00 Ft. 34.40 Ft. 35.20 Ft.	5.67 Ft. 56.00 Ft. 56.67 Ft. 2 2.13 Ft. 42.50 Ft. 43.25 Ft. 3 4.00 Ft. 34.40 Ft. 35.20 Ft. 4	5.67 Ft. 56.00 Ft. 56.67 Ft. 2 \$78,572 2.13 Ft. 42.50 Ft. 43.25 Ft. 3 \$81,752 4.00 Ft. 34.40 Ft. 35.20 Ft. 4 \$91,777	5.67 Ft. 56.00 Ft. 56.67 Ft. 2 \$78,572 \$83,508 2.13 Ft. 42,50 Ft. 43.25 Ft. 3 \$81,752 \$90,320 4.00 Ft. 34.40 Ft. 35.20 Ft. 4 \$91,777 \$101,773	5.67 Ft. 56.00 Ft. 56.67 Ft. 2 \$78,572 \$83,508 \$168,008 2.13 Ft. 42.50 Ft. 43.25 Ft. 3 \$81,752 \$90,320 \$180,537 4.00 Ft. 34.40 Ft. 35.20 Ft. 4 \$91,777 \$101,773 \$197,705	5.67 Ft. 56.00 Ft. 56.67 Ft. 2 \$78,572 \$83,508 \$168,008 \$102,947 2.13 Ft. 42,50 Ft. 43.25 Ft. 3 \$81,752 \$90,320 \$180,537 \$95,110 4.00 Ft. 34.40 Ft. 35.20 Ft. 4 \$91,777 \$101,773 \$197,705 \$95,957	5.67 Ft. 56.00 Ft. 56.67 Ft. 2 \$78,572 \$83,508 \$168,008 \$102,947 \$103,564 2.13 Ft. 42.50 Ft. 43.25 Ft. 3 \$81,752 \$90,320 \$180,537 \$95,110 \$95,957 4.00 Ft. 34.40 Ft. 35.20 Ft. 4 \$91,777 \$101,773 \$197,705 \$95,957 \$97,086	5.67 Ft. 56.00 Ft. 56.67 Ft. 2 \$78,572 \$83,508 \$168,008 \$102,947 \$103,564 \$104,797 \$1.13 Ft. 42.50 Ft. 43.25 Ft. 3 \$81,752 \$90,320 \$180,537 \$95,110 \$95,957 \$97,650 \$1.00 Ft. 34.40 Ft. 35.20 Ft. 4 \$91,777 \$101,773 \$197,705 \$95,957 \$97,086 \$99,343	5.67 Ft. 56.00 Ft. 56.67 Ft. 2 \$78,572 \$83,508 \$168,008 \$102,947 \$103,564 \$104,797 \$181,519 2.13 Ft. 42.50 Ft. 43.25 Ft. 3 \$81,752 \$90,320 \$180,537 \$95,110 \$95,957 \$97,650 \$176,862 4.00 Ft. 34.40 Ft. 35.20 Ft. 4 \$91,777 \$101,773 \$197,705 \$95,957 \$97,086 \$99,343 \$187,733	5.67 Ft. 56.00 Ft. 56.67 Ft. 2 \$78,572 \$83,508 \$168,008 \$102,947 \$103,564 \$104,797 \$181,519 \$187,072 \$1.13 Ft. 42.50 Ft. 43.25 Ft. 3 \$81,752 \$90,320 \$180,537 \$95,110 \$95,957 \$97,650 \$176,862 \$186,277 \$100 Ft. 34.40 Ft. 35.20 Ft. 4 \$91,777 \$101,773 \$197,705 \$95,957 \$97,086 \$99,343 \$187,733 \$198,858

SUMMARY OF MOST ECONOMICAL ALTERNATIVES FOR EACH SPAN ARRANGEMENT:

Number of Spans	Estimated Cost	Foundation Alternative	Superstructure Alternative	Number of Spans	Number of Beams	Number of Piles or Drilled Shafts	Total Length of Piles or Drilled Shafts	Number of Test Piles	Total Length of Test Piles
2	\$190,252	18 in.	Type IV	2	4	19	513 ft	2	84 ft
3	\$181,519	18 in.	Type III	3	4	20	540 ft	2	84 ft
4	\$176,862	18 in.	Type II	4	4	22	594 ft	2	84 ft
5	\$187,733	18 in.	Type II	5	4	26	702 ft	2	84 ft
6	\$198,604	18 in.	Type II	6	4	30	810 ft	2	84 ft

\$176,862 <--- Minimum

RESULT OF COST COMPARISON STUDY:

Most economical superstructure type: Type II

Most economical substructure type: 18 in.

Optimum Span Arrangement: 4 spans at 42.13 FT.

Total bridge length: 168.50 Ft.

Total number of beams: 16

Total length of beams: 674,00 Ft.

Number of piles or drilled Shafts: 22

Length of Piles or drilled Shafts: 594.00 Ft.

Corps of Engineers, Jacksonville, Florida

Done by: M. LeComte

Checked by: C. Li

Alternative 3 (Bridge 4)

ESTIMATE OF PROBABLE CONSTRUCTION COSTS

:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative-3\[Type F Bridge 4.xls]COST

November 29, 2000

Item	Quantity	Units	Unit Price	Am	ount
SUPERSTRUCTURE:					
Concrete	146.0	CY	\$310	\$45	,271
Reinforcing Steel ¹	29938	LBS	\$0.45	\$13	,472
Bridge Floor Grooving	599	SY	\$2.50	\$1.	498
Traffic Railing Barrier	337.0	FT	\$35	\$11	,795
Expansion Joints ³	70.2	FT	\$84	\$5,	894
Type II Beam	674.0	FT	\$54		,396
Neoprene Bearing Pads	3.501	CY	\$425		488
		Superstr	ucture Subtotal	\$115	5,814
SUBSTRUCTURE:					
Concrete	87.0	CY	\$415	\$36	,113
Reinforcing Steel ²	12618	LBS	\$0.45	S5,	,678
Pile Hole, Preformed	22	EA	\$200	\$4,	400
Test Piles	84	Ft.	\$160	\$13	,440
18 in. Prestressed Concrete Piles (F & I)	594	Ft.	\$33		,602
Pile Splices	3	EA	\$110	\$3	330
Drilled shaft		LF	\$220		
Test load for drilled shaft		EA	\$50,000		
Core (Shaft Excavation)		LF			
Temporary casing		LF			
Casing splice		EA			
Excavation, unclassified shaft		LF			
Drilled shaft sidewall overreaming		LF			
Excavation, unclassified extra depth		LF			
		Substr	ucture Subtotal		\$79,563
	,	Constructio	on Cost Subtotal	S	5195,377
Mobilization (5% of Construction Cost)	1	LS		S	9,769
Contingency (15% of Construction Cost)	1	LS		\$	29,307

Total Construction Cost

\$234,453

Deck Square Footage (Ft.)

5,912

Cost Per Square Foot

\$39.66/sf

¹Ratio of reinforcement to superstructure concrete:

205 Lbs/CY.

²Ratio of reinforcement to substructure concrete:

Lbs/CY. 145

³Number of expansion piers:

2

C	M	
r	~	
Ī,		
L		
	The same	

Tamiami Trail Modified Water Deliveries to Everglades National Park Project	Sheet	jo .	
Preparation of Engineering Appendix For GRR/SEIS			
Corps of Engineers, Jacksonville, Florida			
PDIDGE AND CDAN TENCTHS	Design: FO Date 11/29/00	Date	11/29/00
BRIDGE AND SFAN LENGTHS	Checked: CL	Date	Date: 11/29/00

LISTRUCT Design Tamiami - Trail design loost analysis/alternative-3/(Type G Bridges 5 and 6 xls)RESULT

Alternative 3 (Bridges 5 & 6)

101	pan length	s of number of spans	
DINGE LEIN	Minimum Sp	Increaments	

ن

NO. OF	A	ADJUSTED BRIDGE LENGTH(FT.)	E LENGTH(FT.)	AD,	ADJUSTED SPAN LENGTH (FT.)	LENGTH (FT.)
SPANS	18 PILE	24 PILE	36 DRILLED SHAFT	18 PILE	24 PILE	36 DRILLED SHAFT
80	1200	1200	1200	150.0	150.0	150.0
6	1200	1200	1200	133.3	133.3	133.3
10	1200	1200	1200	120.0	120.0	120.0
+	1200	1200	1200	109.1	109.1	109.1
12	1200	1200	1200	100.0	100.0	100.0
13	1200	1200	1200	92.3	92.3	92.3
14	1200	1200	1200	85.7	85.7	85.7
			740 -			
			E (9)			

Tamiami Trail Modified Water Deliveries to Everglades National Park Project	Preparation of Engineering Appendix For GRR/SEIS	Corps of Engineers, Jacksonville, Florida	BEAM SPACING VS DESIGN SPAN
A CORNEL	- X		•

Date: 11/29/00 Date: 11/29/00

ಜ ಕ

Design:

Checked:

of

Sheet

INSTRUCT Design/Tamiami-Trail/design/cost-analysis/alternative-3/[Type G Bridges 5 and 6 xts]RESULT

Alternative 3 (Bridges 5 & 6)

BRIDGE WIDTH:

43.083 Ft.

SLAB THICK:

8.5 In.

NUMBER OF	* BEAM	* ~	** DESIGN SPAN (AASHTO BEAMS)	ASHTO BEAM	(S)
BEAMS	SPACING	TYPEV	TYPE VI	FBT72	FBT78
4	10.77	108.5	126.0	114.0	118.0
9	8.62	115.5	135.0	124.0	128.0
9	7.18	120.5	141.0	132.0	138.0
7	6.15	125.0	146.0	137.0	145.0
8	5.39	128.0	150.0	143.0	152.0

* Based on Cantilever being half of the beam spacing.

** Design spans are determined from the charts based on the beam spacing given.

8	-	_
器	T A	7
20	Ψ,	2
		2

	CO DE CONTRACTOR
Design: FO Date: 07/11/00 Checked: CL Date: 11/29/09	AASHTO BEAMS COMPARISON
	Corp of Engineers, Jacksonville, Florida
SI	Preparation of Engineering Appendix For GRR / SEIS
rrk Project Sheet of	Tamiami Trail Modified Water Deliveries to Everglades National Park Project

NUMBER	TADJUST	ADJUSTED SPAN LENGTH (FT.)	3TH (FT.)	CONTRACTOR OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED	が行うないと	の事務を行うによる	THE HERMAN	NUMBER	NUMBER OF AASHTO BEAMS	AMS			Carlo Charles		The Party of the P
OF	IId	PILES	DRILLED	The state of the s	1	18" PILES	· · · · · · · · · · · · · · · · · · ·		24"	24" PILES	PRINCESSES.	The second	DRILLED SHAFT	SHAFT	-
SPANS	18 IN	24 IN.	SHAFT	^	IA.	FBT72	FBT78	Α	W	FBT72	FBT78	V	N	VI FBT72 FBT78	FBT78
60	150.0	150.0	150.0		80		89		8	8	8		80		8
o	133.3	133.3	133.3		so.	7	9		2	7	9		2	7	9
10	120.0	120.0	120.0	9	4	s	2	9	4	5	2	9	4	2	s
11	109.1	109.1	109.1	2	4	4	4	2	4	4	4	2	4	4	4
12	100.0	100.0	100.0	4	4	4	4	4	4	4	4	4	4	4	4
13	92.3	92.3	92.3	4	Þ	4	4	4	4	+	4	7	7	7	*
14	85.7	85.7	85.7	7	4	4	4	4	4	4	4	77	4	4	4
			4												
			THE STREET												
			100												

NUMBER		Print and and administration of the last o	大学 ないこうかい かんしょう	おからののでは	ESTIMATED CC	ESTIMATED CONSTRUCTION COST OF AASHTO BEAMS	COST OF AASH	TO BEAMS		Charles Age to develope	Secretary Company of the Company of	Standard Con-
P	2000 Contraction of	18" PILE	ES	C. P. Santana		24" PILES	S	THE RESERVE THE PERSON NAMED IN		DRILLED SHAFT	AFT	1
SPANS	^	N	FBT72	FBT78	Λ	N.	FBT72	FB178	Λ	M	FBT72	FBT78
8	N/A	\$1,056,000	N/A	1056000	N/A	\$1,058,000	NVA	1056000	NA	\$1,058,000	N/A	1056000
6	N/A	\$660,000	\$314,800	792000	NA	\$650,000	\$814,800	792000	NVA	\$660,000	\$814,800	792000
10	\$662,400	\$528,000	\$582,000	000099	\$562,400	\$528,000	\$582,000	000099	\$662,400	\$528,000	\$582,000	000099
11	\$552,000	\$528,000	\$465,600	528000	\$552,000	\$528,000	\$465,600	528000	\$552,000	\$528,000	\$465,600	528000
12	\$441.600	\$528,000	\$465,600	528000	\$441,600	\$528,000	\$465,600	528000	\$441,600	\$528,000	\$465,600	528000
13	\$441,600	\$528,000	\$465,600	528000	\$441,600	\$528,000	\$465,600	528000	\$441,600	\$528,000	\$465,600	528000
14	\$441,600	\$528,000	\$465,600	528000	\$441,600	\$528,000	\$465,600	528000	\$441,600	\$528,000	\$465,600	528000
			dia to									
			le:									
										1		
Beam Unit Price:	\$92.00	\$110.00	\$97.00	110.00	\$92.00	\$110.00	\$97.00	110.00	\$92.00	\$110.00	\$97.00	110.00

P	18"	18" PILES		24" PILES	1	DRILLED SHAFT
SPANS	TYPE	COST	TYPE	COST	TYPE	TSOO
80	5	\$1,056,000	IA	\$1,056,000	1>	\$1,056,000
6	5	\$660,000	>	\$660,000		\$660,000
10	5	\$528,000	N	\$528,000		\$528,000
11	FBT72	\$465,600	FBT72	\$465,600	FBT72	\$465,600
12	>	\$441,600	>	\$441,600	۸	\$441,600
13	>	\$441,600	>	\$441,600	^	\$441,600
14	>	\$441,600	>	\$441,600	^	\$441,600
						5

ı	
L	
L	
ı	-
١	•
4	
ı	
r	
и	—
	and the second

Corps of Engineers, Jacksonville, Florida
SUPERSTRUCTURE ALTERNATIVES COMPARISION Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS

Date

2 5

Alternative 3 (Bridges 5 & 6)

FOR 18" FOR 24" FOR DRILLED SHAFT FOR 18" PILES FOR DRILLED SHAFT 19 IN, PILES 24 IN, PILES			ADJUSTED SPAN LENGTH (FT.)	LENGTH (FT.)			COSTOF	COST OF BEAMS & DECK SLAB	KSLAB			BEAM NUMBERS	ERS
PILES PILES TATALLA STATE COST TYPE COST TYPE COST 1500	SPAN	FOR 18"	FOR 24"	TOWNS CO. HOUSE	FOR	18" PILES	FOR	24" PILES	FOR	DRILLED SHAFT	18 IN PILES		DRILLED SHAFT
150	MBER	PILES	PILES	LOW DIVILLED SHELL	TYPE	COST	TYPE	COST	TYPE	COST			
133 3 133 3 133 3 14	8	150.0	1500		>	\$1,601,578	5	\$1,601,578	5	\$1,601,578	8	8	8
120 0 120	a	133.3	1333		5	\$1,205,578	5	\$1,205,578	5	\$1,205,578	10	9	5
100.1 109.1 109.1 FBT72 \$1.011,178 FBT72 \$1.011,178 FBT72 10.01,178 FBT72 10.00	10	120.0	1200		>	\$1,073,578	5	\$1,073,578	5	\$1,073,578	4	4	4
100 0 100 0 100 0 V \$997,778 V \$887,178 V 892.3 92.3 92.3 V \$887,178 V \$997,178 V \$997,178 V \$997,178 V		109.1	109.1	1091	FBT72	\$1,011,178	FBT72	\$1,011,178	FB172	\$1,011,178	4	4	
92.3 92.3 V \$987.178 V \$987.178 V \$987.178 V 8897.178 V	12	100.0	1000	1000	>	\$987,178	>	\$387,178	>	\$987,178	4	4	4
85.7 86.7 65.7 V \$907.176 V \$087.178 V	13	92.3	92.3	92.3	>	\$987,178	>	\$987,178	>	\$387.178	4	4	4
	1	85.7	85.7	85.7	>	\$987,178	>	\$987,178	^	\$987,178	4	4	4

205 Lbs/CY of Concrete \$455

	_		
_			
-	2		
	Ā	•	
w	П		
Ψ.	,		
~	•		
	ā		
	-		
	-		

t s Sheet Design: Checked: Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida

11/29/00

Date: Date:

of

FOUNDATION LOADS AND NUMBER OF 18 IN. PRESTRESSED PILES

Alternative 3 (Bridges 5 & 6)

| STRUCTIDesign/Tamiumi-TrialIdesign/com-mailysis/alternative-Pi[Type G Bodges 5 and 6 xls]RESULT

Bridge Width (ft)	43.083						
Number of lanes	9						
Beam Type	N	M	N	FB172	>	Λ	^
Beam Weight (k/ft)	1.130	1.130	1.130	0.800	1.055	1.055	1.055
Number of Spans	06	o.	10	=	2	13	14
Number of Beams	90	٧,	4	4	₩	÷	4
Span Length (ft)	150.0	133.3	120.0	1.601	100.0	92.3	85.7
Beam Span (ft)	. 148.0	131.3	118.0	107.1	0.86	90.3	83.7
Bridge Deck Thickness (in)	8,500	8.500	8.500	8.500	8.500	8.500	8.500
Comp. Loads (ksf)	0.020	0.020	0.020	0.020	0.020	0.020	0.020
Barrier Loads (k/ft)(both sides)	0.836	0.836	0.836	0.836	0.836	0.836	0.836
Dead Load							
Beam Load (kips) (END BENT)	1144.0	790.9	644.0	513.5	521.7	481.5	447.2
Beam Load (kips) (PIER)	2288.0	1581.8	1288 0	1026.9	1043.4	1,596	8943
Live Load							
Reduction factor	6.0						
Impact factor for Substructure	10						
LL Reaction per lane (END BENT)							
		1000	00 00		20.00	C. 4.4	21 62

714.1

750.0 1251.0

791.6

1343.8

1623.8

784.9

917.0

1070.0 1940.6

1437.5

Superstructure Load (kips) (END BENT)

Total Load

Superstructure Load (kips) (PTFR)

65.93 85.08 229.7

66.40 90.00 243.0

66.87 95.82 258.7

67.33 102.80 277.6

67.80 111.33 300.6

68 27 122.00 329.4

Truck load (kips)

Lane load (kips)

Total Live Load (kips) (PTER)

5.0 8.0 143 146

6.0 9.0 115 139

NA 132

NA EN

NA 131

NA 134

13.0 N/A N/A N/A N/A

Service Load Capacity of Piles (kips)

Maximum pile spacing (ft)

Foundation

Service Design Load (kips)(END BENT)

Service Design Load (kips)(PIER)

** Number of Piles Reqd For PIER

53.43 173.2 65.47 80 86 218.3

64.72 55.54 174.7

65.28

65.84

64.40 179.3

86.98 68.63 185.4

67.52 74.00 199.8

Truck load (kips)

Lane load (kips)

Total Live Load (kips) (END BENT)

LL Reaction per lane (PIER)

1763

177.8

^{**} NOTE: N/A indicates that required number of piles exceeds the max, number of piles based on minimum pile spacing (3 * pile size).

_	
-9-6	
U	
-	•
-	
	•

द्ध य Sheet Design: Checked Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida

FOUNDATION LOADS AND NUMBER OF 24 IN. PRESTRESSED PILES

11/29/00

ö

Alternative 3 (Bridges 5 & 6)

malysis/alternative-3/(Type O Bridges 5 and 6.xbjRESULT

Bridge Width (ft)	43,083						
Number of lanes	9						
Beam Type	7	M	M	FBT72	>	>	Λ
Beam Weight (Lift)	1.130	1.130	1.130	0.800	1.055	1.055	1.055
Number of Spans	50	6	01	=	17	23	4
Number of Beams	00	191		4	4	4	4
Span Length (R)	150.0	133.3	120.0	1.601	100.0	92.3	85.7
Beam Span (ft)	148.0	131.3	118.0	107.1	086	903	83.7
Bridge Deck Thickness (in)	8.500	8.500	8.500	8.500	8.500	8.500	8.500
Comp. Loads (ksf)	0.020	0.020	0.020	0.020	0.020	0.020	0.020
Barrier Loads (Mf) (both sides)	0.836	0.836	0.836	0.836	0.836	0.836	0.836
Dead Load							
Beam Load (kips) (END BENT)	1144.0	790.9	611.0	513.5	521,7	481.5	447.2
Beam Load (kips) (PIF.R)	2288 0	1581.8	1288.0	1026.9	1043.4	963.1	894.3
dive Load							
Reduction factor	60						
Impact factor for Substructure	1.0						
I.I. Reaction per lane (END BENT)							
Truck load (kips)	67.52	96.99	66.40	65.84	82.69	7/ 10	04.10
Lane load (kips)	74,00	68.67	4.40	16.09	58.00	55.54	53.43
Total Live Load (kips) (END BENT)	199.8	185.4	179.3	177.8	176.3	174.7	175.2
I.I. Keaction per lane (FIER)		00.00		26.03	00000	26.07	56.47
Truck load (kips)	132.00	07.80	102.80	95.82	9 9 9	85.08	80.86
Total Live Load (kips) (PIER)	329.4	300.6	277.6	258.7	243.0	229.7	218.3
Total Load Semestranders of Original (FND REVI)	1437.5	1070.0	917.0	784.9	9162	750.0	714.1
Superstructure Load (kips) (PIER)	2675.6	1940.6	1623,8	1343.8	1344.5	1251.0	1170.8
Foundation Maximum pile spacing (ft)	13.0						
Service Load Capacity of Piles (kips)	260.0					5,000	,
** Number of Piles Reqd For END BENT	0.9	5.0	4.0	4.0	4.0	4.0	4.0
Number of Piles Reqd For PIER	NA	N/A	7.0	0.9	6.0	8.0	5.0
Service Design Load (kips)(END BENT)	240	214	229	196	198	187	179
Service Design Load (kips)(PTER)	N/A	NA	132	224	224	250	234

^{**} NOTE: NIA indicates that required number of piles exceeds the max, number of piles based on minimum pile spacing (3 * pile size).

'n	-	Ξ	
			١
Į	B	٦.	
7	ν.		
H	3	3	
Ļ			
	$\overline{}$	_	
L			

Tamiami Trail Modified Water Deliveries to Everglades National Park Project
Preparation of Engineering Appendix For GRR/SEIS
Corps of Engineers, Jacksonville, Florida

11/29/00

Date

ž ť

Design: Checked:

40

Sheet

FOUNDATION LOADS ON DRILLED SHAFT

Alternative 3 (Bridges 5 & 6)

ı		
ı	-	
ı	1	
ı	176	
ı	SEE	
ı	100	
ı	÷.	
ı	10	
ı	3	
ı	30.	
ı	W.	
ı	8	
ı	.33	
ı	8	
ı	3	
ı		
ı	2	
ı	Ξ	
ı	177	
ı	9	
ı	4	
ı	P	
ı	13	
ı	36	
ı	- 100	
ı	20	
ı	8	
ı	7	á
ı		
ı	89,0	5
ı	큠	
ı	15	
ı	29	
ı	퍃	
4	100	
ı	· 🔅	1
ı	8	1
ı	E	3
ı	4	
1	81	
1	借	
1	10	
1	Z	
1	5	
1	3	
1	18	
1	57	•

מנומלב אותחו (וו)	43.083							
Number of lanes	m							
Beam Type	IV «	M	N	FBT72	Λ	^	>	
Beam Weight (k/ft)	1.130	1.130	1.130	0.800	1.055	1.055	1.055	
Number of Spans	90	ō.	10	=	1.2	13	±	
Number of Beams	90	\$	4	7	-	4	7	
Span Length (ft)	150.0	133.3	120.0	1.601	0.001	92.3	85.7	
Beam Span (ft)	148.0	131.3	118.0	107.1	0.86	90.3	85.7	
Bridge Deck Thickness (in)	8 500	8.500	8 500	8.500	\$ 500	\$ 500	8.500	
Comp. Loads (kst)	0.020	0.020	0.020	0.020	0.020	0.020	0.020	
Barrier Loads (k/R)(both sides)	0.836	0.836	0.836	0.836	0.836	0.836	0.836	
Dead Load	1000	900	0.000	;	611.9	2 107		
Beam Load (kips) (END BENT) Beam Load (kips) (PIER)	2288.0	1581.8	1288.0	1026.9	1043,4	963.1	891.3	
Live Load								
Reduction factor	60							
Impact factor for Substructure LL Reaction per lane (END BEN1)	2,							
Truck load (kips)	67.52	96'99	66.40	65.84	65.28	CT.73	91.16	
Lane load (kips)	74 00	29 89	64.40	60.91	58,00	55.54	53.43	
Total Live Load (kips) (END BENT)	8'661	185.4	1793	177.8	176.3	174.7	173.2	
L.L. Reaction per tane (LLER) Truck load (klbs)	68.27	67.80	67.33	66.87	66.40	66.93	65.47	
Lane load (kips)	122.00	111,33	102.80	95.82	90'06	85.08	80.86	
Total Live Load (kips) (PIER)	329,4	300.6	277.6	258.7	243.0	229.7	218.3	
TetalLoad								
 Superstructure Load (kips) (END BENT) 	1466.6	1099.1	946.1	814.0	820.7	1.677	743.2	
* Superstructure Load (kips) (PIER)	2695.0	1960.0	1643.1	1363.2	1363.9	1270.4	1190.2	
Foundation								
Maximum pile spacing (ft)	16.0							
Number of Piles Required For END BENT	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Number of Piles Required For PIER	2	2	*	7	61	.4		
Service Design Load (Kips)(END BENT)	489	366	315	27.1	274	260	248	
Service Design Lond (ProcuPIFR)	1347	980	823	682	682	635	565	1

Sheet Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida

11/29/00 11/29/00 Date: Date 2 7 Design: Checked:

INTERMEDIATE BENTS / PIERS LISTRUCT/Design/Tamiami-Trail/design/cost-analysis/alternative-3/(Type/G Bridges 5 and 6 vis/RESULT

Estimated Pile Embedment Length (Ft.) 19 Pile Length Above Ground (Ft.) 8 Total Length of Pile (Ft.) 27 Estimated Cost of One Pile/Drilled Shaft 8891 BentCap X-section (SqFt.) 9 Bent Length (Ft.) 43.083 Total Concrete Volume (CY.) 14.36	S 24 IN. PILES 19 8 27 27 81,242 9 43.083	21 8 29 29 56,380 12 43.083 19.15
	0000	2778
_	0000	2778

DRILLED SHAFT PIER SECTION DRILLED SHAFT TE BENT SECTION

W/ SINGLE DRILLED SHAFT

/ DOUBLE DRILLED SHAFT PIER SECTION

No.of test load for drilled shaft per bridge Drilled shaft sidewall overreaming Excavation, unclassified extra depth Length of temporary casing % of casing splice Excavation, unclassified shaft Core(Shaft Excavation) DRILLED SHAFT 145 Lbs/CY 24 IN. PILES \$40,320.00 5 8 18 IN. PILES \$40,320.00 5 5 Estimated total cost of test piles w/ dynamic load test per bridge dynamic load tests per bridge PRESTRESSED PILES % of pile splice % of pile hole preformed No. of test piles with

		П					П			_				
ONE BENT/PIER	DRILLED SHAFT	\$29,099	\$28,206	\$27,511	\$26,956	\$26,501	\$26,122	\$25,802	*	4		100000 A 100000		
ESTIMATED COST OF ONE BENT/PIER	18 IN. PILES 24 IN. PILES	N/A	N/A	\$21,590	\$19,683	\$19,316	\$17,552	\$17,293						
ESTIMA	18 IN. PILES	N/A	N/A	N/A	N/A	N/A	\$20,175	\$18,814						
TOTAL COST OF DRILLED SHAFT	PER PIER	\$19,903	\$19,010	\$18,316	\$17,760	\$17,305	\$16,927	\$16,606						
TOTAL COST OF PILES PER BENT	24 IN. PILES	N/A	N/A	\$14,693	\$12,786	\$12,419	\$10,655	\$10,397						
TOTAL COST OF	18 IN. PILES	N/A	N/A	N/A	N/A	N/A	\$13,278	\$11,918						
NUMBER OF	DRILLED SHAFT	2	2.	2	2	2	2	2	160		5			
OF PILES	24 IN. PILES	N/A	N/A	7	9	9	5	S						
NUMBER OF PILES	18 IN. PILES	N/A	N/A	N/A	N/A	N/A	6	80						
NUMBER OF	SPANS	8	m	10	11	12	13	14						

	1
PRS	

Tamiami Trail Modified Water Deliveries to Everglades National Park Project	Sheet	of	2
Preparation of Engineering Appendix For GRR/SEIS			
Corps of Engineers, Jacksonville, Florida			
PNID DENITO	Design: FO	Date	11/29/00
END BENTS	Checked	Date	11/29/00

INSTRUCTIDesign/Tamismi-Trail/design/cost-analysis/alternative/3/(Type/G Boldges 5 and 6 xls/RESULT Alternative 3 (Bridges 5 & 6)

					ENDBENT SECTION				
			PILES OR	DRILLED SHAFT					
DRILLED SHAFT	21	8	29	\$6,380	12	43.083	19.15	2776	\$9,196
24 IN. PILES	19	8	27	\$1,242	7.5	43.083	11.97	1735	\$6,747
18 IN. PILES	19	8	27	\$891	7.5	43.083	11.97	1735	\$5,747
Pile Dia.(Inches)	Estimated Pile Embedment Length(Ft.)	Pile Length Above Ground(Ft.)	Total Length of Pile (Ft.)	Estimated Cost of One Pile/Drilled Shaft	End BentCap X-section (SqFt.)	End Bent Length(Ft.)	Total Concrete Volume(CY.)	Reinforcement(Lbs)*	ESTIMATED COST OF BENT CAP

145 Lbs/CY

	PRESTRE	PRESTRESSED PILES	DRILLED SHAFTS		
	18 IN. PILES	24 IN. PILES	Core(Shaft Excavation)	- F	0
		en.	Length of temporary casing	- F	0
			%'age of casing splice	%	0
			Excavation, unclassified shaft	LF	
% of pile splice	10	10	Drilled shaft sidewall overreaming	- 1	0
% Pile hole preformed	100	100	Excavation, unclassified extra depth	- LF	

						TOTAL COST OF			
NUMBER OF		* NUMBER OF PILES	·· NUMBER OF	TOTAL COST OF	OTAL COST OF PILES PER ENDBENT	DRILLED SHAFT	ESTIMA	ESTIMATED COST OF ONE ENDBENT	NDBENT
SPANS	1	01.110	- 100	93 110 111 07	OA IN DIE EC	CNOCKIT	AS IN DIES	SA IN DILES	DRIII ED SHAFT
	18 IN. PILES	24 IN. PILES	DRILLED SHAFT	IO IN. FILES	£4 III. FIEES	LINDOCINI	10 114: 1 1250	FT 114: 1 1550	
8	N/A	9	\$	N/A	\$8,754	\$31,900	N/A	\$31,327	\$57,921
o	10	2	5	\$11,020	\$7,295	\$31,900	\$33,593	\$29,868	\$57,921
10	6	4	'n	\$9,918	\$5,836	\$31,900	\$32,491	\$28,409	\$57,921
=	00	4	5	\$8,816	\$5,836	\$31,900	\$31,389	\$28,409	\$57,921
15	00	4	5	\$8.816	\$5,836	\$31,900	\$28,791	\$25,811	\$55,324
13	80	4	2	\$8,816	\$5,836	\$31,900	\$28,791	\$25,811	\$55,324
14	7	4	S	\$7,714	\$5,836	\$31,900	\$27,689	\$25,811	\$55,324
								.750	
								4.4	
								т.	
	The second of th				ADMINISTRATION OF THE PROPERTY				

^{*} Includes 2 wingwall piles for all beam types

^{**} Includes 2 wingwall drilled shafts for all beam types

-	
LAN	
2.2	

Tamiami Trail Modified Water Deliveries to Everglades National Park Project
Preparation of Engineering Appendix For GRNSEIS
Corps of Engineers, Jacksonville, Florida
SUBSTRUCTURE & SUPERSTRUCTURE ALTERNATIVES COMPARISION

11/29/00

20

mend (Tips C Briggs 2 and 6 staples), LT

(9)	
3ridges 5	
thve 3	

-	ADJUSTED SPAN LENGTH	H(FL)	20.00	8	COST OF SUBSTRUCTURE	URE	500	COST OF SUPER STRUCTURE	JCTURE .	TOT	TOTAL COST OF STRUCTURE	UCTURE
SPAN 18 IN. PILES	3 24 IN. PILES	DRILLED SHAFT	NO. OF	18 IN. PILES	24 IN. PILES	DRILLED SHAFT	18 IN. PILES	24 IN. PILES	DRILLED SHAFT	18 IN. PILES	24 IN. PILES	DRILLED SHAFT
450.0	860.0	150.0	7	MA	NIA	\$319,534	\$1,601,578	\$1,601,578	\$1,601,578	N/A	NA	\$1,921,112
1444	0000	133.3		N.A	N.A	\$341,490	\$1,205,578	\$1205,578	\$1,205,578	MA	NIA	\$1,547,068
4000	1300	420.0	0	N.A	\$251.127	\$363,445	\$1,073,578	\$1,073,578	\$1,073,578	N.A	\$1,324,705	\$1,437,024
1001	0.000	1001	10	NWA.	\$253.647	\$385,401	\$1,011,178	\$1,011,178	\$1,011,178	N.A.	\$1,264,825	\$1,395,580
1000	0000	0 001	11	N.A	\$284,102	\$402,161	\$51,178	\$987.178	\$987,178	N.A	\$1,251,280	\$1,389,340
603	603	92.3	12	5299 581	\$262.245	\$424,117	\$387,178	\$987,178	\$987,178	. \$1,286,859	\$1,249,423	\$1,411,295
85.7	2 980	85.7	13	\$239,966	\$276,437	\$448,073	\$987,178	\$387,178	\$987,178	\$1287,144	\$1,263,615	\$1,433,251
										.0		
										3		
										-		
										3		
										*		
										-1		

SUMMARY OF MOST ECONOMICAL ALTERNATIVES FOR EACH SPAN ARRANGEMENT:

COST	FOUNDATION	SUPERSTR. ALTERNATIVE	CORRESPONDING NUMBER OF SPANS	NUMBER OF BEAMS	NUMBER OF PILES OR DRILLED SHAFT	TOTAL LENGTH OF PILES OR DRILLED SHAFT (FT.)	NUMBER OF TEST PILES	TOTAL LENGTH OF TEST PILES (FT.)
\$1 921 112	DRILLED SHAFT	5	8	60	24	969	0	0
\$1,547,068	DRILLED SHAFT	5	o.	s	36	754	0	0
\$1.504.705	24 IN PILES	5	- 10	4	99	1755	9	252
\$1 264 825	24 IN PILES	FBT72	11	4	62	1874	9	252
1 251 280	24 IN PILES	^	12	4	85	1838	9	252
81 249 423	24 IN PILES	^	13	+	55	1674	9	252
\$1283.815	24 IN PILES	^	- 14	77	67	1809	9	252

RESULT OF COST COMPARISON STUDY:				
MOST ECONOMICAL SUPERSTRUCTURE TYPE:	Λ			
MOST ECONOMICAL SUBSTRUCTURE TYPE:	24 IN. PILES			
OPTIMUM SPAN ARRANGEMENT	13	SPANS AT	92.31 FT.	
TOTAL BRIDGE LENGTH:	1200 FT.			
TOTAL NUMBER OF BEAMS:	62			
TOTAL BEAM LENGTH:	4800 FT.			
NUMBER OF PILES OR DRILLED SHAFT	62			
LENGTH OF PILES OR DRILLED SHAFT:	1674 FT.			

Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida ESTIMATE OF PROBABLE CONSTRUCTION COSTS

Sheet of Design: FO Date: 11/29/00

Date: 11/29/00

Checked: CL

L'STRUCT/Design'Tamiami-Traif/design'cost-analysis/alternative-3/{Type G Bridges 5 and 6 xls|RESULT

Alternative 3 (Bridges 5 & 6)

ITEM .	QUANTITY	UNITS	UNIT PRICE	AMOUNT
SUPERSTRUCTURE:				
Class II Concrete (Superstructure)	1356.3	CY	\$310.00	\$420,458
Reinforcing Steel (Superstructure)*	278045	LBS	\$0.45	\$125,12
Bridge Floor Grooving	5333	SY	\$2.50	\$13,33
Fraffic Railing Barrier	2400.0	FT	\$35.00	\$84,00
Expansion Joints***	215.4	FT	\$84.00	\$18,09
AASHTO Beam, Type V	4800.0	FT	\$92.00	\$441,60
Neoprene Bearing Pads	29.120	CY	\$425.00	\$12,37
		Superstr	ucture Subtotal	\$1,114,98
SUBSTRUCTURE:				
Class II Concrete – (Substructure)	255.2	CY	\$415.00	\$105,92
Reinforcing Steel (Substructure)**	37010	LBS	\$0.45	\$16,65
Pile Hole, Preformed	62	EA	\$200.00	\$12,40
Test Piles	252	Ft.	\$160.00	\$40,32
Prestressed Concrete Piles (F & I)	1674	F1.	\$46.00	\$77,00
Pile Splices	7	EA	\$170.00	\$1,19
Drilled shaft	0	LF	\$220.00	9
Fest load for drilled shaft	0	EA	\$50,000.00	9
Core(Shaft Excavation)	0	LF	\$0.00	3
Temporary casing	0	LF	\$0.00	3
Casing splice	0	EA	\$0.00	1
Excavation, unclassified shaft	0	LF	\$0.00	1
Drilled shaft sidewall overreaming	0	LF	\$0.00	\$
Excavation, unclassified extra depth	0	LF	\$0.00	5
		Substr	ructure Subtotal	\$253,49
		Construction	on Cost Subtotal	\$1,368,47
Mobilization (5% of Construction Cost)	1	LS		\$68,42
Contingency (15% of Construction Cost)	1	LS		\$205,271.4
		Total Co	onstruction Cost	\$1,642,17
		Deck Squa	re Footage (Ft.)	51,70
		Cost	Per Square Foot	\$31.70
*RATIO REBAR:CONC. (SUPERSTRUCT		205	Lbs/CY.	
**RATIO REBAR:CONC. (SUBSTRUCTU	RE):	145	Lbs/CY.	

^{**}RATIO REBAR:CONC. (SUBSTRUCTURE):

205 Lbs/CY. 145 Lbs/CY. 5

^{***}NO.OF EXPANSION PIERS:

Appendix D-6

Alternative 5

_		
-	-	
ĸ	M	
Þ		
L		
	The latest divined	
r		

Tamiami Trail Modified Water Deliveries to Everglades National Park Project	Sheet	of.	
Preparation of Engineering Appendix For GRR/SEIS			
Corps of Engineers, Jacksonville, Florida			
	Design. FO Date:	Date: 1	1/29/00
BRIDGE AND SPAN LENGTHS	Checked CL Date: 11/29/00	Date: 1	1/29/00

LISTRUCT Design Tamiami: Trail design loost-malysis/alternative-5 (Type H Bridge 1 Als RESULT Alternative 5

Bridge Length Minimum Span length Increaments of number of spans

59220 Ft. 100 Ft. 15 ن

NO. OF	AD	JUSTED BRIDG	ADJUSTED BRIDGE LENGTH(FT.)	AD.	ADJUSTED SPAN LENGTH (FT.)	LENGTH (FT.)
SPANS	18 PILE	24 PILE	36 DRILLED SHAFT	18 PILE	24 PILE	36 DRILLED SHAFT
						0 747
330	59220	59220	. 59220	151.8	151.8	9.101
405	59220	59220	59220	146.2	146.2	146.2
420	59220	59220	59220	141.0	141.0	141.0
435	59220	59220	59220	136.1	136.1	136.1
450	59220	59220	59220	131.6	131.6	131.6
465	59220	59220	59220	127.4	127.4	127.4
480	59220	59220	59220	123.4	123.4	123.4
495	59220	59220	. 59220	119.6	119.6	119.6
510	59220	59220	59220	116.1	116.1	116.1
525	59220	59220	59220	112.8	112.8	112.8
540	59220	59220	59220	109.7	109.7	109.7
555	59220	59220	59220	106.7	106.7	106.7
570	59220	59220	59220	103.9	103.9	103.9
585	59220	59220	59220	101.2	101.2	101.2

PBS	Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida	Sheet	ot
	BEAM SPACING VS DESIGN SPAN	Design: FO Checked: CL	Date: 11/29/00 Date: 11/29/00

PSTRUCT Design/Tamiami-Trail/design/cost-analysis/alternative-5/Type H Bridge Lxts]RESULT

Alternative 5

BRIDGE WIDTH:

43.083 Ft.

SLAB THICK:

8.5 In.

NUMBER OF	* BEAM	1	** DESIGN SPAN (AASHTO BEAMS)	VASHTO BEAM	(8)
BEAMS	SPACING	TYPE V	TYPE VI	FBT72	FBT78
4	10.77	108.5	126.0	114.0	118.0
5	8.62	115.5	135.0	124.0	128.0
9	7.18	120.5	141.0	132.0	138.0
7	6.15	125.0	146.0	137.0	145.0
80	5.39	128.0	150.0	143.0	152.0

* Based on Cantilever being half of the beam spacing.

** Design spans are determined from the charts based on the beam spacing given.

	-	-	
Ç)	
£	ľ	3	
Ĺ	1		
		_	

Tamiami Trail Modified Water Deliveries to Everglades National Park Project	Sheet		Jo
Preparation of Engineering Appendix For GRR / SEIS Corp of Engineers, Jacksonville, Florida	ı		L
AASHTO BEAMS COMPARISON	Design: Checked:	Б Б	Design: FO Date: 07/11/00 Checked: CL Date: 11/29/00

1	FD FBT2 FBT2 FBT72 F	n I	A SAS WHICH HALLY DOLLY	1 CLEAN TOWNS TO SHARM THE STATE OF THE STAT			P P P P P P P P P P P P P P P P P P P									
V VI FB172 FB178 V VI FB172 FB178 V VI FB172 FB178 V VI FB171 8 9 8 9	18	ADJUSTED SPAN LENGTH (FT.)	H	ET.)		A CHICAGO AND A COLUMN		時程度と近	NUMBER	OF AASHTO BE	AMS	The second second				
V V FB172 FB178 V VI FB172 FB172 FB173 V	V V FB172 FB172 FB172 FB172 FB172 FB173 V V M FB172 8 9 8 9	PILES	DR	CED	The same of the same	18	- BILES	The state of the s	THE REPORT OF	24	PILES	Security of the last	Appropriate the second	DRILLED	.89	H
8	8	24 IN. SI	S	TAFT	Λ		FBT72	FB178	^	N	FBT72	FBT78	^			BT78
8	8	151.8		151.8		8		80		8		80		8		00
6 6 6 6 7 7 8 7 8 7 9 8 7 9 8 7 9 8 7 9 8 7 9 8 7 9 8 7 9 9 9 8 7 9 9 9 9	6 6 6 6 7 7 6 6 7 8 7 7 8 8 7 7 8 8 7 7 8 8 7 8 8 7 8 8 7 8	146.2	_	146.2		80		80		89		80		60		00
6	6	1410	_	141.0-		9	89	7		9	60	7		9	00	7
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	136.1	-	136.1		9	7	9		9	7	9		9	7	ω
8 6 6 6 6 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 6 6 6 6 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	131.6		131.6		so.	9	9		3	9	9		9	9	9
7 4 5 7 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 6 4 5 7 4 4 4 4 6 4 5 8 4 4 4 4 4 4 4 4 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 4 5 7 4 5 6 4 5 5 6 4 5 6 4 4 4 4 4 5 6 4 4 4 4 4 4 5 6 4 4 4 4 4 4 5 7 4 4 4 4 4 4 4 4 8 4 4 4 4 4 4 4 4 4 4 4 <td>127.4</td> <td></td> <td>127.4</td> <td>60</td> <td>9</td> <td>9</td> <td>5</td> <td>60</td> <td>2</td> <td>9</td> <td>9</td> <td>60</td> <td>20</td> <td>9</td> <td>တ</td>	127.4		127.4	60	9	9	5	60	2	9	9	60	20	9	တ
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	123.4		123.4	1	4	2	S	7	4	2	9	7	4	2	co
0	0	119.6		119.6	9	4	s,	5	9	4	9	9	9	4	'n	co
0 0	0 0 <td>116.1</td> <td></td> <td>116.1</td> <td>9</td> <td>च</td> <td>s</td> <td>4</td> <td>9</td> <td>4</td> <td>2</td> <td>4</td> <td>9</td> <td>4</td> <td>S</td> <td>4</td>	116.1		116.1	9	च	s	4	9	4	2	4	9	4	S	4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 5 4 6 4 6 <td>112.8</td> <td>_</td> <td>12.8</td> <td>2</td> <td>4</td> <td>*</td> <td>4</td> <td>2</td> <td>4</td> <td>4</td> <td>4</td> <td>50</td> <td>4</td> <td>4</td> <td>ч</td>	112.8	_	12.8	2	4	*	4	2	4	4	4	50	4	4	ч
4 4 <t< td=""><td>4 4 <t< td=""><td>109.7</td><td></td><td>7.60</td><td>2</td><td>4</td><td>+</td><td>4</td><td>S</td><td>4</td><td>4</td><td>4</td><td>9</td><td>4</td><td>4</td><td>4</td></t<></td></t<>	4 4 <t< td=""><td>109.7</td><td></td><td>7.60</td><td>2</td><td>4</td><td>+</td><td>4</td><td>S</td><td>4</td><td>4</td><td>4</td><td>9</td><td>4</td><td>4</td><td>4</td></t<>	109.7		7.60	2	4	+	4	S	4	4	4	9	4	4	4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	106.7		106.7	4	4	4	4	4	4	4	4	4	4	4	4
4 4 4 4 4 4	4 4 4 4 4 4	103.9		103.9	4	4	4	*	4	4	4	4	4	4	4	4
		101.2		101.2	4	4	*	4	4	4	4	4	4	4	4	4

NOW CHECK	SANSON SPERSON	Separate Separate	Section of the last of the las	P. Principle of the last of th	ESTIMATED CC	ESTIMATED CONSTRUCTION COST OF AASHTO BEAMS	COST OF AASH	TO BEAMS	CONTRACTOR OF STREET	Service Control of the The state of the s	STATE OF THE PERSON NAMED IN	
PO	大学 の の の の の の の の の の の の の の の の の の の	18" PIL	ES	The same of the last		24" PILES	ES			DRILLED SHAFT	AFT	
SPANS	Α	5	FBT72	FBT78	Λ	M	FBT72	FBT78	V		FBT72	FBT78
390	N/A	\$52,113,600	NA 3	52113600	N.A	\$52,113,600	N/A	52113600	N/A	\$52,113,600	N/A	5.2E+07
405	NA	\$52,113,600	N.A.	52113600	NYA	\$52,113,600	NA	52113600	N/A	\$52,113,600	N/A	5.2E+07
420	N/A	\$39,085,200	\$45,954,720	45599400	NA	\$39,085,200	\$45,954,720	45599400	N/A	\$39,085,200	\$45,954,720	4.6E+07
435	NA	\$39,085,200	\$40,210,380	39085200	NA	\$39,085,200	\$40,210,380	39085200	N/A	\$39,085,200	\$40,210,380	3.9E+07
450	N/A	\$32,571,000	\$34,456,040	39065200	N/A	\$32,571,000	\$34,466,040	39085200	N/A	\$32,571,000	\$34,466,040	3.9E+07
465	\$43 585 920		\$34,466,040	32571000	\$43,585,920	\$32,571,000	\$34,456,040	32571000	\$43,585,920	\$32,571,000	\$34,468,040	3.3E+07
480	\$38,137,680	_	\$28,721,700	32571000	\$38,137,680	\$26,056,800	\$28,721,700	32571000	\$38,137,680	\$26,056,800	\$28,721,700	3.3E+07
495	\$32,689,440	1	\$28,721,700	32571000	\$32,689,440	\$26,056,800	\$28,721,700	32571000	\$32,689,440	\$28,056,800	\$28,721,700	3.3E+07
510	\$32,689,440	L	\$28,721,700	26056800	\$32,689,440	\$26,055,800	\$28,721,700	26056800	\$32,689,440	\$26,056,800	\$28,721,700	2.6E+07
525	\$27 241 200	┺	\$22,977,360	26056800	\$27,241,200	\$26,056,800	\$22,977,360	26056800	\$27,241,200	\$26,056,800	\$26,056,800 \$22,977,360	2.6E+07
540	\$27 241 200	\$26,056,800	\$22,977,360	26056800	\$27,241,200	\$26,056,800	\$22,977,360	26056800	\$27,241,200	\$26,058,800	\$26,056,800 \$22,977,360	2.6E+07
555	\$21,792,960	_	\$22,977,360	25055800	\$21,792,960	\$26,056,800	\$22,977,360	26056800	\$21,792,960	\$28,058,800	\$22,977,360	2.6E+07
570	\$21,792,960	\$26,056,800	\$22,977,350	26056800	\$21,792,960	\$26,056,800	\$22,977,360	26056800	\$21,792,980	\$26,056,800	\$22,977,360	2.6E+07
585	\$21,792,960	\$26,058,800	\$22,977,360	26056800	\$21,792,960	\$26,056,800	\$22,977,360	28056800	\$21,782,950	\$26,056,800	\$22,977,350	2.8E+07
Beam Unit Price:	\$92.00	\$110.00	\$97.00	110 00	\$92.00	\$110.00	\$97.00	110.00	\$92.00	\$110.00	\$97.00	110.00

NUMBER	400	40" Dil EC	MOSI EC	MOST ECONOMICAL PASTILO DESMITTE		DRILLED SHAFT
SPANS	TYPE	COST	TYPE	COST	TYPE	C05T
390	5	\$52,113,600	5	\$52,113,600	5	\$52,113,600
405	5	\$52,113,600	5	\$52,113,600	5	\$52,113,600
420	5	\$39,085,200	N	\$39,085,200	5	\$39,085,200
435	5	\$39,085,200	- N	\$39,085,200	N	\$39,085,200
450	5	\$32,571,000	N	\$32,571,000	5	\$32,571,000
465	5	\$32,571,000	>	\$32,571,000	5	\$32,571,000
480	5	\$28,056,800	5	\$26,056,800	X	\$26,056,800
495	>	\$28,056,800	>	\$28,056,800	5	\$28,056,800
510	7	\$26,056,800	N	\$26,056,800	IA	\$26,056,800
525	FBT72	\$22,977,360	FBT72	\$22,977,360	FBT72	\$22,977,360
540	FBT72	\$22,977,360	FBT72	\$22,977,360	FBT72	\$22,977,360
555	>	\$21,792,960	>	\$21,792,960	^	\$21,792,960
570	>	\$21,792,960	>	\$21,792,960	>	\$21,792,960
585	>	\$21,792,960	>	\$21,792,960	^	\$21,792,960

-	
CH.	
<u> </u>	

Tamiami Trail Modified Water Deliveries to Everglades National Park Project
Preparation of Engineering Appendix For GRR/SEIS
Corps of Engineers, Jacksonville, Florida
SUPERSTRUCTURE ALTERNATIVES COMPARISION

11/29/00

Dane:

2 2

Design Checked

Alternative 5

		ADJUSTED SPAN LENGTH (LENGTH (FT.)			COSTOR	COST OF BEAMS & DECK SLAB	K SLAB			BEAM NUMBERS	ERS
SPAN	FOR 18"	FOR 24"		FOR	FOR 18" PILES	5	FOR 24" PILES	FOR	FOR DRILLED SHAFT	18 IN PILES	24 IN. PILES	DRILLED SHAFT
NUMBER	PILES	PILES	TON DALLED SUBL	TYPE	COST	TYPE	COST	TYPE	COST			
390	151.8	151.8	151.8	5	\$79,037,893	5	\$79,037,893	>	\$79,037,893	8	60	60
405	146.2	146.2	1462	5	\$79,037,893	5	\$79,037,893	5	\$79,037,893	89	80	80
420	141.0	1410	141.0	5	\$66,009,493	5	\$66,009,493	5	\$56,009,493	9	9	9
435	1361	138.1	1361	5	\$66,009,493	N	\$66,009,493	>	\$66,009,493	0	9	9
450	131.6	1316	131.6	5	\$59,495,293	7	\$59,495,293	5	\$59,495,293	0	9	9
485	127.4	127.4	127.4	5	\$59,495,293	>	\$59,495,293	>	\$59,495,293	w	9	'n
480	123.4	123.4	123.4	5	\$52,981,093	I۸	\$52,981,093	>	\$52,981,093	4	4	9
495	119.6	119.6	119.6	5	\$52,981,093	>	\$52,881,093	5	\$52,981,093	4	4	4
510	118.1	1161	116.1	5	\$52,981,093	5	\$52,981,093	>	\$52,981,093	4	4	4
828	1128	1128	112.8	FB172	\$49,901,653	FBT72	\$49,901,653	FB172	\$49,901,653	4	च	4
640	1097	109.7	1097	FBT72	\$49,901,653	F8172	\$49,901,653	FBT72	\$49,901,653	4	4	4
555	1067	1067	1087	>	\$48,717,253	>	\$48,717,253	>	\$48,717,253	4	4	4
920	103.9	103 9	103.9	>	\$48,717,253	>	\$49,717,253	^	\$48,717,253	4	4	4
585	101.2	101.2	101.2	>	\$48,717,253	>	\$48,717,253	>	\$48,717,253	Ą	4	7
			14									
	Dock Reinforcemen	ment	205	205 Lbs/CY of Concrete	Canarete							
	Cost of Deck/Fast	301	0044									

•	
	7

11/29/00 Dare: Dare: ö 2 5 Sheet Design: Checked: FOUNDATION LOADS AND NUMBER OF 18 IN. PRESTRESSED PILES Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida

USTRUCT Design Taniami-Trail design to symmetric altra design Like [RESULT

Alternative 5

Bridge Width (ft)	43.083													
Number of lanes	. 3													
Beam Type	L/	N	I	N	1.7	7	M	M	M	FB172	FBT72	>	Λ	>
Beam Weight (k.ft.)	1.130	1.130	1.130	1.130	1.150	1.130	1.130	1.130	1.130	0.800	0.800	1.055	1.055	1055
Number of Spans	390	405	420	43.5	450	465	480	495	510	525	240	555	570	585
Number of Beams	90	oc	9	ъ	v	5	7	+	4	4	7	+	+	4
Span Length (ft)	151.8	146.2	141.0	136.1	131.6	127.4	123.4	119.6	116.1	112.8	109.7	106.7	103.9	101.2
Beam Span (R)	149.8	144.2	139.0	134.1	129.6	125.4	121 4	117.6	114.1	110.8	107.7	104.7	6.101	99.2
Bridge Deck Thickness (in)	8.500	8.500	8 500	8.500	8.500	8.500	8 500	8.500	8.500	8.500	8.500	8.500	8.500	8.500
Comp. Loads (ksf)	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.000	0.020
Barrier Loads (k/ft)(both sides)	9:830	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836
Dead Load	1166.1	5311	016.0	5.88	780 6	755.4	1,09	123	633.2	530.9	\$16.2	556.6	542.0	188
Beam Load (kips) (ENL) BENT)	2316.2	2230.4	1832.1	1768.9	1561 2	1510.9	1324.3	1284.1	1246.4	6.1901	1032,4	1113.3	1084.0	1056.2
Live Lond	0													
Impact factor for Substructure	07													
I.I. Reaction per lane (END BENT) Truck load (klos)	67.57	67.40	67.23	67.06	68'99	66.72	66.55	66.38	66.21	66.04	65.87	65.70	65.53	65.36
Lane load (kips)	74.59	72.79	71.12	95 69	68.11	66.75	65.48	64.28	63.16	62.10	60'19	60.14	59.25	58.39
-	201.4	196.5	192.0	187.8	183.9	180.2	179.7	179.2	178.8	178.3	177.9	177.4	1769	176.5
I.I. Reaction per lane (PIER) Truck load (klps)	68.31	68.17	68.03	68.49	67,74	09.29	67.46	67.52	67.18	67.04	68.89	66.75	19.99	66.47
Lane load (kips)	123,18	119.58	116 24	113,13	110 22	107.51	104.96	102.57	100.32	98.19	61'96	94.29	92.49	50.73
Total Live Load (kips) (PIER)	332.6	322.9	313.8	305.4	297.6	290.3	283.4	276.9	270.9	265.1	259.7	254.6	249.7	245.1
TotalLoad							į						4 5 5	
Superstructure Load (kips) (FND BENT) Superstructure Load (kips) (PIER)	1453.2	1405.4	2204.1	1166.0	1938.2	1859.3	1665.8	1619.2	1575.4	1385.1	1350.2	1426.0	1391.9	1359.5
Foundation	9													
Service Load Capacity of Piles (kips)	147.0				1	;		e e	t	Ç		0.9	0.7	0.7
** Number of Piles Reqd For END BENT	V/N	N/A	Y.Y.	8.0	8.0	0.8	7.0	7.0	0.7	0.0	0,0	0.0	0.0	200
** Number of Piles Read For PIER	YN.	Y.N.	K/N	N/A	NA CE	170	134	NA IEI	128	134	131	138	135	133
Service Design Load (kips)(END BEN1) Service Design Load (kips)(PIER)	N/A	N/A	NA	N/A	NA	N/A	V/N	N/A	NA	NA	VA	N/A	N/A	V/N

**NOTE: N/A indicates that required number of piles exceeds the max, number of piles based on minimum pile spacing (3 * pile size).

- 4 -
E 40-4
W 1
7.7
Control of Street
Particular and the

Date: 11/29/00 Date: 11/29/00 ¥ Sheet FOUNDATION LOADS AND NUMBER OF 24 IN. PRESTRESSED PILES Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida

1.STRUCT Design Taminani-Trail design/con-smaly with humanite-5 (Type II Bridge 1 via [RESULT

Alternative 5

Bridge Width (ft)	43 083													
Number of lanes	7 5	5	M	M	N.	N	IV	17	ΙΛ	FB172	FBT72	Λ	^	>
Beam 13 pc	1130	1 130	1.130	1.130	1.130	1 130	1.130	1.130	1.130	0.800	0.800	1.055	1.055	1.055
Number of Spans	390	405	420	435	450	465	480	495	510	525	540	555	570	585
Number of Beams	00	100	•	9	2	5	~	4	4	4	4	4	+	4
Span Leaville (0.)	151.8	146.2	141.0	136.1	131.6	127.4	123.4	9.611	116.1	112.8	109.7	1067	103.9	101.2
Beam Span (ft)	1498	144.2	139.0	134.1	129.6	125.4	121.4	117.6	114.1	110.8	107.7	104.7	6.101	2.66
Bridge Dock Thickness (in)	8.500	8.500	8 500	8.500	8.500	8.500	8.500	8.500	8.500	8.500	8.500	8.500	8.500	8.500
Comp. Loads (ksf)	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
Barrier Loads (k/ft)(both sides)	0.836	0.836	9880	0,836	0.836	0.836	0.836	0,836	0.836	0.836	0.836	0.836	0.836	0.836
Proof I and														
Read Load (king) (FND BENT)	1158.1	1115.2	916.0	884.5	780.6	755.4	662.1	643.1	623.2	530.9	516.2	556.6	542.0	528.1
Beam Load (kips) (PIFR)	2316.2	2230.4	1832.1	1768.9	15612	1510.9	1324.3	1284.1	1246.4	1061.9	1032,4	1113.3	1084.0	1056.2
Live Load														
Reduction factor	6.0													
Impact factor for Substructure	1.0													
I.I. Reaction per lane (END BENT) Tench load (blue)	62.63	67.40	67.73	62.06	68 99	66.72	55 99	66.38	66.21	90.99	65.87	65.70	65,53	65.36
Lana load (kips)	74.59	22.22	71.12	69.56	68.11	66.75	65.48	64.28	63.16	62.10	61.09	50,14	59.25	58.39
Total Live Load (kips) (END BENT)	201.4	196.5	192.0	187.8	183.9	1802	179.7	179.2	178.8	178.3	177.9	177.4	176.9	176.5
I.I. Reaction per lane (PIER) Truck load (kine)	15 83	68.17	68.03	62.89	67.74	67.60	67.16	67.32	81.79	67.04	66.89	66.75	19 99	66.47
Lana load (kips)	123 18	119.58	116.24	113,13	110.22	107.51	104.96	102.57	100.32	98.19	61 96	94.29	92.49	90.79
Total Live Load (kips) (PIER)	332.6	322.9	313.8	305.4	297.6	290.3	283.4	276.9	270.9	265.1	259.7	2546	249.7	245.1
Total Load													,	,
Superstructure Load (kips) (END BENT) Superstructure Load (kips) (PER)	1453.2	1405.4	1201.8	1166.0	1058.2	1029.4	935.5	915.0	1575.4	802.9 1385.1	1350.2	827.7 1426.0	812.6	1359.5
Foundation														
Maximum pile spacing (ft) Service Load Capacity of Piles (kips)	13.0	ß		;		;				,	•		9	9.7
** Number of Piles Reqd For END BENT	6.0	0.9	0.5	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	9 9	9 6
** Number of Piles Reqd For PIER	N/A	N/A	NA	N/A	NA.	Y.Y.	7.0	7.0	7.0	0.0	0.9	0.0	909	200
Service Design Load (kips)(END BENT)	747	234	240	233	717 X.4	N. S.	238	231	325	231	225	238	232	227
Service Design Load (kips)(FLER)	ent	1000			C).					i				

^{**} NOTE: N/A indicates that required number of piles exceeds the max, number of piles based on minimum pile spacing (3 * pile size).

1	_		
ĩ		7	
3		,	
2	x	9	
r	5	•	
ı			
-		_	

Sheet Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida

11/29/00

Date:

2 2

Design: Checked:

40

FOUNDATION LOADS ON DRILLED SHAFT

Alternative 5

L'STRUCT Design Tamiani-Traif design/cost

analysis/alternative-54 type II Bridge 1 sts/RESULT

1	10.000													
Number of lanes	3													1
Beam Type	N	N	N	M	5	7	M	N	N	FB172	FB172	>	^	>
Beam Weight (k/ft)	1.130	1.130	1.130	1.130	1.130	1.150	1.130	1.130	1.130	0.800	0 800	1.055	1.055	1.055
Number of Spans	390	405	420	435	450	465	480	495	510	525	240	555	570	585
Number of Beams	90	60	9	9	5	10	4	-	4	4	7	4	7	4
Span Length (R)	151.8	146.2	141.0	1361	9761	127.4	123.4	119.6	1.911	112.8	109.7	106.7	103.9	101.2
Beam Span (ft)	8 671	144.2	139.0	134.1	129.6	125.4	121.4	117.6	114.1	110.8	107.7	104.7	1019	99.2
Bridge Deck Thickness (in)	8.500	8.500	8.500	8.500	8.500	8.500	8 500	8.500	8.500	8.500	8.500	8.500	8.500	8.500
Comp. Loads (Asf)	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
Barrier Loads (kitt)(both sides)	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0,836
Dead Load														
Beam Load (kips) (END BENT)	1158.1	1115.2	916.0	884.5	780.6	755.4	662.1	642.1	623.2	530.9	516.2	556.6	542.0	528.1
Beam Load (kips) (PIFR)	2316.2	2230.4	1832.1	1768.9	1561.2	1510.9	1324.3	1284.1	12464	6.1901	1032.4	1113.3	1084.0	1056.2
Live Load														
Reduction factor	6.0													
Impact factor for Substructure	1.0													
I.I. Reaction per lane (END BENT)		04.40	27.23	70 67	00 27	07.33	25 59	25.55	16.99	70 99	65.87	65.70	65 53	65.36
land load (kips)	74.59	27.70	71.12	69 56	68.11	66.75	65.48	64.28	91.69	62.10	60.19	60 14	59.25	58.39
Total Live Load (kins) (END REND)	201.4	196.5	192.0	187.8	183.9	180.2	179.7	179.2	178 8	178.3	177.9	177,4	176.9	176.5
I.I. Reaction per lane (PIER)										į		183	,	3
Truck load (kips)	68.31	68.17	68 03	62.89	67.74	67.60	67.46	67.32	67.18	20.00	68 99	66.73	1999	199
Lane load (kips)	123,18	119.58	116.24	113.13	110.22	107.51	104.96	102.57	100.32	98 19	96.19	9429	92.49	245.1
Total Live Load (kips) (PIER)	5320	6778	515.8	4,505,4	0767	700	1.002.4	6.072	670.7	1.00	1777	1		
Total Load														
 Superstructure Load (kips) (END BENT) 	1482.3	1434.5	1230.9	1195.1	1087.3	1058.5	964.6	944.1	924.7	832.0	816.8	856.8	841,7	827.4
* Superstructure Load (kips) (PIER)	2726.3	2630.8	2223.5	2151.9	1936.4	1878.7	1685.2	1638.6	1594.8	1404.5	1369.6	1445.4	1411.3	1378.9
Foundation Maximum pile spacing (ft)	99													
Cantilever dist. From shart to coping (II) Number of Piles Required For FND RENT	3.0	3.0	3.0	3.0	3.0	3.0	3,0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Number of Piles Required For PIER	1	**	**	2	14		2	3	2	г	7	2	7	
Service Design Load (kins)/FND BENT	494	478	410	398	362	353	322	315	308	277	272	286	181	276
Source Decision Load (Pine)(PITR)	1911	1315	61111	1076	0.70	020	213	010	FOR	404	589	733	20%	000

88	32		7	-	
20	致	Ç	r	1	
	产	à		•	
		i	1	-	

ot Sheet Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS INTERMEDIATE BENTS / PIERS Corps of Engineers, Jacksonville, Florida

11/29/00 Date: Date: 2 5 Design: Checked:

1 STRUCT Design Tamiano Trail designicos consulyas alternative S [Type II Bridge 1 xls]RESULT

5	
O	
≘	
e	
Ξ	
9	
A	

	-				DRILLED SHAFT	DRILLED SHAFT.
Pile Dia.(Inches)	18 IN. PILES	24 IN. PILES	24 IN. PILES DRILLED SHAFT	PILES +	1	
Estimated Pile Embedment Length(Ft.)	19.	19	21		\	1
Pile Length Above Ground(Ft.)	80	œ	80			/
Total Length of Pile (Ft.)	27	27	29			
Estimated Cost of One Pile/Drilled Shaft	\$891	\$1,242	\$6,380			
BentCap X-section (SqFt.)	6	6	12			*
Bent Length(Ft.)	43.083	43.083	43.083	INTERMEDIATE BENT SECTION		PIER SECTION
Total Concrete Volume(CY.)	14.36	14.38	19.15		W/ SINGLE D	W/ SINGLE DRILLED SHAFT
Reinforcement(Lbs)	2082	2082	2776			
ESTIMATED COST OF BENT CAP	\$6,897	\$6.897	\$9,196			

PIER SECTION / DOUBLE DRILLED SHAFT

145 Lbs/CY

	18 IN. PILES	24 IN. PILES	DRILLED SHAFT					
No. of test piles with	297	292	No.of test load for	No.of test load for drilled shaft per bridge	EA	1		
dynamic load tests per bridge		h F-11	Core(Shaft Excavation)	tion)	J. LF	0		
		ir I	Length of temporary casing	ry casing	T.	0		
Estimated total cost of test piles	as \$1,995,840 00	\$1,995,840.00	% of casing splice		%	0		(1)
w/ dynamic load test per bridge	•		Excavation, unclassified shaft	sified shaft	J)			
% of pile splipe	10	10	Drilled shaft sidewall overreaming	all overneaming	J)	0		
% of pile hole preformed	100	100	Excavation, unclassified extra depth	sified extra depth	I.F.	0		100
		ww						
NUMBE	NUMBER OF PILES	NUMBER OF	TOTAL COST O	TOTAL COST OF PILES PER BENT	TOTAL COST OF DRILLED SHAFT	ESTIM	ESTIMATED COST OF ONE BENT/PIER	ONE BENT/PIER
SPANS 18 IN. PILES	S 24 IN. PILES	DRILLED SHAFT	18 IN. PILES	24 IN. PILES	PER PIER	18 IN. PILES	24 IN. PILES	DRILLED SH
t	N/A	2	N/A	N/A	\$12,889	N/A	N/A	\$22,084
	N/A	2	N/A	N/A	\$12,884	N/A	N/A	\$22,080
	N/A	2	N/A	NA	\$12,879	N/A	N/A	\$22,075
	N/A	2	N/A	N/A	\$12,875	N/A	N/A	\$22,071
	A/A	2.	N/A	N/A	\$12,871	N/A	N/A	\$22,067
	N/A	2	N/A	N/A	\$12,868	N/A	N/A	\$22,064
	7	2	A/A	\$14,380	\$12,864	N/A	\$21,277	\$22,060
	7	2	N/A	\$14,253	\$12,861	N/A	\$21,150	\$22,057
	7	2	N/A	\$14,134	\$12,858	NA	\$21,031	\$22,054
	9	2	A/A	\$12,563	\$12,855	NA	\$19,460	\$22,051
	9	2	NA	\$12,457	\$12,853	N/A	\$19,354	\$22,049
	9	21	N/A	\$12,357	\$12,850	N/A	\$19,253	\$22,046
	8	2	N/A	\$12,262	\$12,848	N/A	\$19,158	\$22,044
	9	2	NA	\$12,172	\$12,848	N/A	\$19,068	\$22,041

SHAFT

	15	
	20	
1		

11/29/00 Date: ţ 2 3 Sheet Design: Checked: Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida END BENTS

LISTRUCTIONS ignificanismi. Traff design/cost-analysis/alternative-5/(Type H Bridge Lixts)RESULT Alternative 5

		house a	A CONTRACTOR OF THE CONTRACTOR		ENDBENT SECTION				
			PILES OR	DRILLED SHAFT					
DRILLED SHAFT	21	8	29	\$6,380	12	43.083	19.15	2776	\$9,196
24 IN. PILES	19	8	27	\$1,242	7.5	43.083	11.97	1735	\$5,747
18 IN. PILES	19	8	3 27	\$891	7.5	43.083	11.97	1735	\$5,747
Pile Dia.(Inches)	Estimated Pile Embedment Length(Ft.)	Pile Length Above Ground(Ft.)	Total Length of Pile (Ft.)	Estimated Cost of One Pile/Drilled Shaft	End BentCap X-section (SqFt.)	End Bent Length(Ft.)	Total Concrete Volume(CY.)	Reinforcement(Lbs)*	ESTIMATED COST OF BENT CAP

145 Lbs/CY

	PRESTRE	PRESTRESSED PILES	DRILLED SHAFTS		
	18 IN. PILES	24 IN. PILES	Core(Shaft Excavation)	- LF	0
			Length of temporary casing	LF CF	0
		De est	% age of casing splice	*	0
		y-	Excavation, unclassified shaft	T)	
% of pile splice	10	10	Drilled shaft sidewall overreaming		0
% Pile hole preformed	100	100	Excavation, unclassified extra depth	LF	

NDBENT	DRILLED SHAFT	\$57,921	\$57,921	\$57,921	\$57,921	\$57,921	\$57,921	\$57,921	\$57,921	\$57,921	\$57,921	\$57,921	\$55,324	\$55,324	\$55,324	
ESTIMATED COST OF ONE ENDBENT	24 IN. PILES	\$31,327	\$31,327	\$29,868	\$29,868	\$29,868	\$28,409	\$28,409	\$28,409	\$28,409	\$28,409	\$28,409	\$25,811	\$25,811	\$25,811	
ESTIMA	18 IN. PILES	N/A	N/A	N/A	\$33,593	\$33,593	\$33,593	\$32,491	\$32,491	\$32,491	\$31,389	\$31,389	\$28,791	\$28,791	\$28,791	
TOTAL COST OF DRILLED SHAFT PER	ENDBENT **	\$31,900	\$31,900	\$31,900	\$31,900	\$31,900	\$31,900	\$31,900	\$31,900	\$31,900	\$31,900	\$31,900	\$31,900	\$31,900	\$31,900	
TOTAL COST OF PILES PER ENDBENT	24 IN. PILES	\$8,754	\$8.754	\$7,295	\$7,295	\$7,295	\$5,836	\$5,836	\$5,836	\$5,836	\$5,836	\$5,836	\$5,836	\$5,836	\$5,836	
TOTAL COST OF	18 IN. PILES	N/A	N/A	N/A	\$11,020	\$11,020	\$11,020	\$9,918	\$9,918	\$9,918	\$8,816	\$8,816	\$8,816	\$8,816	\$8,816	
** NUMBER OF	DRILLED SHAFT	2	S	5	2	2	5	S.	5	5	2	9	2	2	2	
* NUMBER OF PILES	24 IN. PILES	9	9	2	S	9	4	4	4	4	4	4	4	4	4	
	18 IN. PILES	N/A	NA	NA	10	10	10	6	6	6		80	8		80	
NUMBER OF SPANS		390	405	420	435	450	465	480	495	510	525	540	555	570	585	

* Includes 2 wingwall piles for all beam types

** Includes 2 wingwall drilled shafts for all beam types

Tamiami Irail Modified Water Deliveries to Everglades National Park Project Preparation of Engineers, Jacksonstile, Plorida Corps of Engineers, Jacksonstile, Plorida SUBSTRUCTURE & SUPERSTRUCTURE ALTERNATIVES COMPARISION

N Design FO Dute Checked CI. Due

11/29/00

T. Design Tananan Trail dougs contempted about the conference of property designs to the JECOLIE

Alternative 5

	0.0	TO LUTCHO LINAGO COTOL OA	W.ET.		00	COST OF SUBSTRUCTURE	TURE	600	COST OF SUPER STRUCTURE	CTURE	TOT	TOTAL COST OF STRUCTURE	JCTURE
SPAN	18 IN. PILES	24 IN. PILES	DRILLED SHAFT	NO. OF PIERS	18 IN PILES	24 IN. PILES	DRILLED SHAFT	18 IN. PILES	24 IN. PILES	DRILLED SHAFT	18 IN. PILES	24 IN. PILES	DRILLED SHAFT
2000	8.77	2 727	1618	289	N.A.	N/A	\$8,706,660	\$79,037,893	\$79,037,893	\$79,037,893	NIA	NA	\$87,744,553
	0.000	14.8.9	145.7	404	MA	N.A.	59 035 997	\$79,037,893	\$79,037,893	\$79,037,893	. N/A	N.A.	\$88,073,890
3 5	7040	4440	1410	617	N/A	N/A	\$9,365,334	\$66,009,493	\$66,009,493	\$66,009,493	N/A	NIA	\$75,374,827
200	0.00	1 50.4	1381	757	NA	N.A.	59 694 672	\$66,009,493	\$66,009,493	\$66,009,493	N/A	N/A	\$75,704,165
25	424.6	151.8	4.45	677	MA	NA	\$10,024,009	\$59,495,293	\$59,495,293	\$59,495,293	NIA	N.A.	\$69,519,302
200	0121	427.4	1074	757	NA	N.A.	\$10,353,347	\$59,495,293	\$59,495,293	\$59,495,293	MA	N.A	\$69,848,640
504	17.77	7 204	P 253	67.9	4.4	\$10.248.286	\$10 682 684	\$52,981,093	\$52,981,093	\$52,981,093	N.A	\$63,229,379	\$63,663,777
204	+57	9011	0000	707	NA	\$10.504.934	\$11,012,022	\$52,981,093	\$52,981,093	\$52,981,093	N/A	\$63,468.027	\$63,993,115
25	0.00	100	1000	609	NA	\$10.751.582	\$11,341,359	\$52,981,093	\$52,981,093	\$52,981,093	N.A.	\$63,742,675	\$64,322,452
210	101	845	200	765	4N	\$10.253.714	\$11 670 898	\$49,901,653	\$49,901,653	\$49,901,653	A.N.	\$60,155,367	\$61,572,349
676	2007	1007	1000	065	NA	\$10 488 477	\$12,000,034	\$49,901,653	\$49,901,653	\$49,901,653	NA	\$60,390,130	\$51,901,687
3	1007	400.3	1067	854	N/A	\$10.718.044	\$12,324,175	\$48,717,253	\$48,717,253	\$48,717,253	N'A	\$59,435,297	\$81,041,428
200	1000	403.0	1000	695	N/A	\$10,952,807	\$12,853,513	\$48,717,253	\$48,717,253	\$48,717,253	N.A	\$59,670,060	\$61,370,788
585	101.2	101.2	1012	584	NA	\$11,187,571	\$12,582,850	\$48,717,253	\$48,717,253	\$48,717,253	- NA	\$59,904,824	\$61,700,103
T			1										

SUMMARY OF MOST ECONOMICAL ALTERNATIVES FOR EACH SPAN ARRANGEMENT:

590 6 788 22852 0 0 405 8 818 22852 0 0 430 6 818 2452 0 0 430 6 878 2452 0 0 450 5 908 25492 0 0 465 5 908 27322 0 0 490 4 908 27322 0 0 510 4 1058 28672 0 0 540 4 1058 31652 0 0 540 4 1058 31652 0 0 540 4 118 33422 0 0 540 4 1178 34462 0 0
8 8:18 23:122 0 0 6 8:18 24592 0 0 6 8:18 25492 0 5 9:08 27:332 0 4 9:08 28942 0 4 10:08 31:562 0 4 11:18 33:442 0 4 11:18 33:442 0 4 11:18 33:442 0 4 11:18 33:442 0 4 11:18 33:442 0 4 11:18 33:442 0 6 11:18 34:162 0 7 11:18 34:462 0 8 11:18 34:462 0 9 11:18 34:462 0 9 11:18 34:462 0 9 11:18 34:462 0 9 11:18 34:462 0 9 11:18 34:462 0
6 848 25452 0 0 6 878 25452 0 0 6 878 25452 0 0 0 6 878 25452 0 0 6 878 27202
6 8.78 25492 D 5 908 27332 0 4 908 27332 0 4 908 27332 0 4 1028 28842 0 6 4 1058 38842 0 4 1058 3682 0 4 1118 33422 0 4 1118 33422 0 4 1178 34162 0
5 90-8 203322 0 4 90-8 27302 0 4 90-8 280-7 0 4 102-8 316-8 0 4 106-8 316-8 0 4 111-8 31-42 0 4 111-8 31-42 0 4 111-8 31-42 0 4 111-8 31-42 0 4 111-8 31-462 0
5 955 27202 0
4 965 25072 0 0
4 599 29842 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1028 21812 0 4 1058 31652 0 4 1088 31452 0 4 1118 31422 0 4 1178 3462 0
4 1058 33682 0 4 1058 31652 0 4 1119 3242 0 4 1178 34152 0
4 1148 33482 0 4 1148 33482 0 4 1178 34182 0
4 1118 33422 0 1148 33782 0 4 1178 3462 0
4 1148 33292 4 1176 34162
4 1178 34162

\$61,041,428 <--- Minimum

RESULT OF COST COMPARISON STUDY:

MOST ECONOMICAL SUPERSTRUCTURE TYPE:
MOST ECONOMICAL SUBSTRUCTURE TYPE:
OPTIMUM SPAN ARRANGEMENT
TOTAL BRIDGE LENGTH:
TOTAL NUMBER OF BEAMS;
TOTAL BRIDGE CON DRILLED SHAFT
LENGTH OF PILES OR DRILLED SHAFT:

DRILLED SHAFT 555 56220 FT. 2220 236880 FT. 1118 33422 FT.

NOTE: DRILLED SHAFT ALTERNATIVE IS CHOSEN TO MINIMIZE THE OBSTRUCTION IN CANAL

Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS Corps of Engineers, Jacksonville, Florida

ESTIMATE OF PROBABLE CONSTRUCTION COSTS

Design: FO

Sheet

Date: 11/29/00

Date: 11/29/00 Checked: CL

PSTRUCT/Design/Tamiami-Trail/design/cost-analysis/alternative-5/[Type H Bridge Lxis]RESULT

Alternative 5

ITEM	QUANTITY	UNITS	UNIT PRICE	AMOUNT
SUPERSTRUCTURE:				
Class II Concrete (Superstructure)	66934.2	CY	\$310.00	\$20,749,611
Reinforcing Steel (Superstructure)*	13721517	LBS	\$0.45	\$6,174,682
Bridge Floor Grooving	263200	SY	\$2.50	\$658,000
Fraffic Railing Barrier	118440.0	FT	\$35.00	\$4,145,400
Expansion Joints***	8616.6	FT	\$84.00	\$723,794
AASHTO Beam, Type V	236880.0	FT	\$92.00	\$21,792,960
Neoprene Bearing Pads	1243.200	CY	\$425.00	\$528,360
		Superstructure Subtotal		\$54,772,807
SUBSTRUCTURE:				
Class II Concrete - (Substructure)	10705.3	CY	\$415.00	\$4,442,684
Reinforcing Steel (Substructure)**	1552263	LBS	\$0.45	\$698,51
Pile Hole, Preformed	0	EA	\$0.00	\$
Test Piles	0	Ft.	\$0.00	\$
Prestressed Concrete Piles (F & I)	0	Ft.	\$0.00	\$
Pile Splices	0	EA	\$0.00	\$
Drilled shaft	32422	LF	\$220.00	57,132,84
Fest load for drilled shaft	1	EA	\$50,000.00	\$50,00
Core(Shaft Excavation)	0	LF	\$0.00	\$
Temporary casing	0	LF	S0.00	\$
Casing splice	0	EA	\$0.00	S
Excavation, unclassified shaft	0	LF	\$0.00	S
Drilled shaft sidewall overreaming	0	LF	\$0.00	S
Excavation, unclassified extra depth	0	LF	\$0.00	S
		Substructure Subtotal		\$12,324,043
		Construction Cost Subtotal		\$67,096,850
Mobilization (5% of Construction Cost)	1	LS		\$3,354,84
Contingency (15% of Construction Cost)	t	LS		\$10,064,527.5
		Total Co	onstruction Cost	\$80,516,22
		Deck Squa	re Footage (Ft.)	2,551,37
a 110 m 80 90		Cost	Per Square Foot	\$31.56
*RATIO REBAR: CONC. (SUPERSTRUCT **RATIO REBAR: CONC. (SUBSTRUCTU		205 Lbs/CY, 145 Lbs/CY.		

^{***}NO.OF EXPANSION PIERS:

²⁰⁰

Tamiami Trail Modified Water Deliveries to Everglades National Park Project Preparation of Engineering Appendix For GRR/SEIS

Corps of Engineers, Jacksonville, Florida

ESTIMATE OF ADDITIONAL COST OF STRUCTURES

I:\STRUCT\Design\Tamiami-Trail\design\cost-analysis\alternative 2Dcanalside\[Walls.xls]CantWall

PBS,

Done by: F. ORNARLI

Checked by: S.YETIMOGLU November 29, 2000

Project Length

59220.00 Ft

Total Bridge Length

Alternative 2D

3841.00 Ft (2 - 475ft long, 2 - 345.5ft long, 1 - 1000ft long and 1 - 1200ft long bridges)

NOTE: 1000ft long bridge is at Tiger Tail Camp area & 1200ft long bridge is at abondoned park area on the east side of Struct. S355B are proposed not to further reduce the width of narrower canal in these area.

ITEM	UNIT PRICE	QTY	TOTAL PRICE
1000ft long Bridge at Tiger Tail Camp	\$32.00	43000 SF	\$1,376,000.00
1200ft long Bridge at Park Area	\$32.00	51600 SF	\$1,651,200.00
Retaining wall on canal side(Kingpile System)	\$461.43	55379 LF	\$25,553,285.84
Retaining wall on canal side	\$159.28	55379 LF	\$8,820,686.79
Temporary retaining system	\$331.68	55379 LF	\$18,367,958.02
Traffic Barrier on retaining wall	\$35.00	55379 LF	\$1,938,265.00
			655 505 304

* TOTAL: \$57,707,396

^{*} NOTE: This cost is additional to the cost of 4 bridges in Alternative 2.